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Abstract 
 

We use confidential Census microdata to compare outcomes for plants in counties that “win” a 
new plant to plants in similar counties that did not to receive the new plant, providing empirical 
evidence on the economic theories used to justify local industrial policies. We find little 
evidence that the average highly incentivized large plant generates significant productivity 
spillovers. Our semiparametric estimates of the overall local agglomeration function indicate 
that residual TFP is linear for the range of “agglomeration” densities most frequently observed, 
suggesting local economic shocks do not push local economies to a new higher equilibrium. 
Examining changes twenty years after the new plant entrant, we find some evidence of 
persistent, positive increases in winning county-manufacturing shares that are not driven by 
establishment births. 
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1. Introduction 

Luring new business through tax credits, grants, low-interest loans, and other financial 

incentives – collectively labeled economic development incentives – is foremost amongst the 

policies used by state and local governments to support local economies and jobs (Combes et al. 

2010; Bartik 2012; Story 2012; Patrick 2016). The use of economic development incentives is 

growing. Current estimates of state and local incentives range from $45 billion to $90 billion (in 

2015$) annually (Bartik 2017). Increasingly, these resources are directed towards extremely 

high-cost incentives packages for very large projects that promise significant job creation and 

investment (Schwartz 2018). In addition to the direct benefits of the new business, such generous 

incentives policies are justified based upon indirect (multiplier) effects, or spillovers, generated 

by the large, new entrant.  

These large new establishments are expected to increase productivity and output at existing 

establishments, spur additional new business entrants, and, generally speaking, put the location 

on a higher, long-term growth path. Policymaker discussions surrounding recent competitions for 

Intel, Amazon HQ2, and Foxconn demonstrate these expectations. Yet, the lifespan of the 

average U.S. establishment is 10 years, regardless of age or size – a timespan that is often less 

than or equal the duration of the promised benefits and incentive package (Santa Fe Institute 

2015). Long-term benefits of such firm attraction then critically rely on indirect spillovers.  

The notion of long-lasting effects from a one-time shock reflects the economic concept of 

persistence. Persistence in the spatial distribution of economic activity or persistence in the 

effects of shocks is a prominent outcome in a large class of models incorporating localized 

increasing returns to scale (agglomeration externalities) or other forms of endogenous amenities 

(Lee and Lin 2018). This class of models also feature multiple equilibria. Following Krugman 

(1991), there are multiple equilibria in a locations’ share of overall manufacturing in which the 

observed spatial distribution of activity depends upon the history of locational shocks. In such 

models, shocks of sufficient size can “push” a location past some specific-activity threshold to a 
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new-equilibrium steady-state share of economic activity.  

These models’ theoretical potential for policy-induced change gives credence to the 

policymaker rationale for generously incentivizing large new plants, and there is also empirical 

evidence suggesting these shocks can be important. For example, studies that document long-run 

effects from temporary factors or shocks provide evidence supporting the existence of path 

dependence and multiple equilibria. Bleakley and Lin (2012) document the long-lasting effects 

of portage (water-way transhipment points) on the current spatial distribution of U.S. population 

despite more than a century of obsolescence. Similarly, Hanlon (2014) demonstrates that the 

large, temporary, negative shock to cotton supplies caused by the U.S. Civil War had long-run 

effects on the distribution of U.K cotton manufacturing.  More recently, Allen and Donaldson 

(2018) demonstrate that spillovers from historical (as well as contemporaneous) shocks are 

empirically important in the U.S. context. Of course, this depends upon the strength of 

agglomeration spillovers and curvature of the (net) agglomeration function (Bleakley and Lin 

2015; Davis and Weinstein 2002, 2008; Allen and Donaldson 2018).  

The types of long-lasting change that arise from large shocks and strong agglomeration 

externalities are what underlies the rationale for attracting large plants. Yet, there is little 

empirical evidence available to support or undermine the notion of transformational change from 

successful attraction of a large plant. Using confidential Census microdata, we provide estimates 

that directly address the core reasoning inherent in local industrial policy.  We ask three related 

questions: First, how consistent is the evidence that successful attraction of large plants generates 

significant agglomeration externalities in the form of productivity spillovers for nearby 

incumbent plants? Second, how does incumbent-plant productivity vary at different densities of 

“economically-close” plants, i.e. what is the shape of the agglomeration function? And, finally, 

do we find evidence of persistent changes in winning locations’ share of manufacturing 

(manufacturing-industry) activity?  

Greenstone, Hornbeck, and Moretti (2010) (GHM) provide the only existing microdata 

evidence on the agglomeration externalities associated with successful attraction of a highly-
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incentivized, large new plant. They estimate very large productivity spillovers associated with 

their set of 47 large plant openings and this suggests that their set of large plant shocks are ideal 

candidates to induce long-lasting effects. We start with their plant openings and then expand the 

analysis to other sets of incentivized plant openings as well as a set of randomly drawn large new 

plants.  

We estimate significant cumulative increase in incumbent plant productivity after 5 years 

associated with the GHM MDP openings, albeit without the large mean shift estimated by GHM. 

However, these spillovers are econometrically identified by a unique subset of plants that 

continuously operate in counties that are both a winner and a loser for more than one county in 

the sample. After numerous robustness checks, they also appear to be unique to the particular 

MDP openings in the GHM sample and sensitive to empirical specification. Our results suggest 

much weaker spillovers associated with other highly-incentivized MDP openings, although 

consistent with the larger agglomeration literature. These findings support the idea that 

agglomeration externalities are a function of many offsetting negative and positive interactions, 

so that the addition of one establishment (even a very large establishment) is unlikely to cause 

large changes in the overall level of interactions. 

Having established the short-run magnitude of large, new-plant spillovers, we 

nonparametrically estimate the effect of local plant density on plant output in a partially-linear 

regression model and instrument for density using deep lags of county market potential, while 

conditioning for other key location factors. We obtain a kernel-density estimate whose shape 

may be interpreted as the shape of the agglomeration functions with respect to four definitions of 

local plant density. In this way, we contribute the first microdata derived non-parametric 

estimates of the agglomeration function across different sources of agglomeration externalities.  

Our semiparametric estimates of the agglomeration function indicate that the residual TFP is 

linear with interactions between economically-close plants for a range of densities most 

frequently observed in the data. This suggests minimal potential for long-lasting effects and 

multiple-equilibria characteristic of models featuring localized increasing returns to scale.  
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We look for empirical evidence of such long-run effects by comparing county-manufacturing 

output and county-manufacturing industry shares of national manufacturing from before the 

large plant opening with those 20 years after.  Our findings indicate the MDP shocks have 

persistent, positive effects on winning-county output shares, but the data do not strongly support 

multiple equilibria. We also find no evidence of longer-term increases in establishment births in 

winning counties. Thus, our results suggest that even in the presence of significant spillovers for 

some incumbent plants and persistent effects on output, these large plant openings are an 

insufficiently large positive shock to push locations into a new equilibrium. This may be due to 

countervailing congestion forces or weaker than anticipated spillovers or both.  

Our research contributes to a recent body of literature examining economic development 

incentives and, more specifically, highly-subsidized large firms (e.g., Gabe and Kraybill 2002; 

Slattery 2020; Kim 2018; Slattery and Zidar 2020; Freedman 2017). Slattery (2020) documents 

the potential for aggregate welfare gains from subsidized firms that is a function of the 

relationship between locations’ incentive bids and welfare. She acknowledges the inherit issues 

in quantifying the locational benefits and this paper provides additional insights on those 

benefits. We do so by looking directly at short-run changes in TFP and long-run changes in 

output shares, firm births, and firm deaths.  

We provide the only plant-level estimates of changes in short-run TFP other than GHM, with 

estimates directly comparable across the GHM and other sets of large plant openings. We also 

highlight the sensitivity of such estimates. In doing so, we answer the long-standing question 

about the generalizability of their results to local industrial policies targeting large 

establishments.  

We also contribute the only microdata examination of the long-run effects of local industrial 

policies. Freedman’s (2017) county-level investigation of the Depression-era Mississippi 

“Balance Agriculture with Industry” (BAWI) Program that started the current trends in local 

economic development policy is the only other study to examine longer-term effects associated 

with subsidizing large plants. 
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Through economic development policy and local spillovers associated with broader regional 

economic growth, our work relates to the long-running literature on local employment, output, 

and value-added (GDP) multipliers. Focusing on local employment multipliers (LEM), they 

equal the total local employment change after an exogenous increase of one local worker—e.g., a 

LEM of 2.5 implies that one newly-created exogenous direct job leads to another 1.5 new jobs 

elsewhere in the local economy.3 Very large LEMs, for example, can support “big-push” 

development leaps or even multiple-equilibria outcomes.   

The modern LEM literature dates to Daly (1940) for LEMs derived from economic-base 

models and from Isard (1951) for LEMs derived from interregional input-output models. The 

economic-base model assumes that local regions have a base (or traded-export) employment that 

is supported by local or nonbase employment. The corresponding LEM equals one base job plus 

the number of nonbase jobs supporting the base increase. Yet, the economic-base model suffers 

from key-theoretical shortcomings outlined in Tiebout (1956) and Kikenny and Partridge (2009). 

Mainly, its mercantilist approach assumes local growth only originates from local exports, along 

with the base model’s failing to consider that a local trade surplus (deficit) means, by definition, 

that there is an equal-sized capital-account deficit (surplus) that also affects local activity. LEMs 

derived from interregional input-output models also face many theoretical concerns such as the 

absence of prices and the disregard of other offsetting “crowd-ins” or “crowd-outs.” 

Bartik (1991) began a renascence of statistically-estimated LEMs with his use of the 

employment-growth share from shift-share analysis as an exogenous instrument for overall local 

employment growth. The share variable also can be directly used as a labor-demand-shifter 

 
3In simple settings, total new jobs can be decomposed into: (1) direct jobs, (2) indirect-jobs from input-output 
supply-chain, as well as tertiary-industry effects that support the direct- and supporting-industry effects, and (3) 
induced-jobs from the increased spending of workers on such items as groceries, entertainment, etc. Farren and 
Partridge (2015) using the IMPLANTM input-output social-accounting-matrix software found that the LEM for coal 
mining in the three-core Virginia coal-producing counties equaled 1.74, i.e., 1=direct + 0.36 indirect + 0.38 induced. 
In reality, there are other positive/negative impacts from exogenous shocks due to productivity spillovers; higher 
factor prices crowding-out other firms; finite elasticity of local labor supply and net-migration; start-ups or firm 
deaths induced from the exogenous shock; dynamic agglomeration or congestion effects, etc. 
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variable in empirical models, from which the coefficient reflects the multiplier.4 A key advantage 

of econometrically-estimated LEMs is all the positive and offsetting negative effects of an 

exogenous direct-employment shock are estimated, and hence, not constrained by stringent 

assumptions in other models. Morreti (2010) further accelerated the estimation of LEMs across a 

plethora of cases such as for traded goods, “high-tech,” nontraded goods, oil and natural-gas 

jobs, business start-ups and small businesses, etc. Extensive reviews by Bartik and Sotherland,5 

Van Dijk (2018), and Osman and Kemeny (2021) conclude that econometrically-estimated 

county-level LEM multipliers realistically equal about 1.5 and about 2.0 for U.S. states. Detang-

Dessendre et al. (2016) found similar multipliers for French local regions. Yet, LEMs in the 1.5 

to 2.0 range suggest that local growth induced by exogenous demand shocks are unlikely to 

produce a transformative big-push shifting local economies to new-equilibria paths. 

Besides economic development implications, we also contribute to the theoretical and 

quantitative-modelling literatures featuring agglomeration externalities or endogenous amenities 

by providing micro-founded nonparametric estimates of the agglomeration function and 

estimating the persistence parameter for a local shock (e.g., see Davis and Weinstein 2002, 2008; 

Bosker, Brakman, Garretsen, and Schramm 2007; Redding, Sturm, and Wolf 2011; Bleakley and 

Lin 2015; Lee and Lin 2018; Allen and Donaldson 2018). 

Our findings also relate to the literature on the persistence of local-employment demand 

shocks (Bartik, 1993; Amoir and Manning 2018; Deltas et al. 2019). Our findings of persistent 

output effects without significant changes in births and death are similar to Bartik (1991, 1993) 

 
4Shift-share analysis of local economies dates to U.S. military planning during World War II and remains a key 
practitioner tool (Dunn 1960). The local-share component equals the hypothetical employment-growth rate of the 
local economy if all of the local industries grow at their corresponding national growth rate—i.e., does the local 
economy have a composition of fast- or slow-growth industries. Bartik (1991) rationalizes the exogenous nature of 
the shift-share-component demand shock and explains that the key identification assumption to use it as an 
instrumental variable is that there are no contemporaneous local labor-supply changes that are associated with 
lagged local-industry composition (or at least after controlling for labor-supply variables to condition those effects 
from the residual). When used as a direct explanatory variable, the potential econometric concerns are reduced 
because it is not being used as an instrument, but not necessarily eliminated. For an overview of the econometric 
issues when using “Bartik” or “shift-share” variables, see Borusyak et al. (2022).    
5 For a summary of Bartik and Sotherland’s findings and links to this research, see https://www.upjohn.org/research-

highlights/what-are-realistic-job-multipliers, downloaded January 28, 2022.  

https://www.upjohn.org/research-highlights/what-are-realistic-job-multipliers
https://www.upjohn.org/research-highlights/what-are-realistic-job-multipliers
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and Amoir and Manning’s (2018) results that employment rates modestly change in response to 

persistent local labor demand shocks. In other words, it appears that labor supply changes in net-

migration and commuting patterns completely meet the persistent change in labor demand, 

leading to little long-run change in real wages. Together, our results and assuming perfect 

mobility of capital—which leads to the local return to capital equaling the national return—

suggest limited welfare gains from highly-subsidized large-plant locations.  

 

2. Incentivized Large Plant Openings 

 

For our purposes, a firm’s decision to open a new establishment or significantly expand an 

existing establishment is referred to as a case. The county in which the new establishment locates 

is referred to as the “winner” for each case. The counterfactual counties for each case are 

referred to as the “losers.” A sample of cases includes the MDP as well as the “winner” and 

“loser” counties for each case. Identification relies critically on the selection of “losers” and is 

described in Section 3.1. 

We examine four sets of MDP cases from multiple sources to determine the sets of 

potentially-incentivized plant openings. The analysis starts with replicating the primary spillover 

result in GHM. GHM base data relies on the “Million Dollar Plant” (MDP) sample outlined in 

Greenstone and Moretti (2003) (GM). According to the authors, they obtain the sample from 

1982-1993 Site Selection magazine regular features “Million Dollar Plant”.6 Site Selection 

magazine is an internationally circulated business publication covering corporate real estate and 

economic development, which relies on state and local economic development organizations for 

advertising dollars.7 The MDP series describes how high-profile plant location decisions were 

made, reporting the county where the plant located (the “winner”), and (sometimes) reports other 

 
6 The precise source of the sample is nuanced. See Appendix 1 of Patrick (2016) for more details. 
7 The magazine’s primary audience is economic development and site-selection professionals engaged in firm 
recruitment and location assistance.   
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counties who were speculated to have been finalists in the site-selection process (the “losers”). 

Generally, to be listed by the magazine, competitions for MDPs had to be public knowledge, 

which creates an unknown selection bias. 

GHM use 47 of 63 potential GM manufacturing cases in their analysis.8 We obtained the 

restricted-access statistical programs from the Census Bureau to determine the subset of GM 

MDPs used in GHM and construct the 47 case subset using these programs. We refer to the 

GHM subset of GM MDPs as case set 1. 

Patrick (2016) details the process of reproducing GHM’s sample from the primary-source 

documents and notes additional potential cases that appear in the magazine during the study 

period that were not included in GHM’s sample (sometimes with both a winner and loser). We 

therefore expand the set of potential large-plant shocks to include these additional cases, so that 

all firm location decisions appearing in the magazine from 1982-1993 are considered, regardless 

of whether the article details the “loser.”  

We supplement the Site Selection magazine cases a database of incentivized plant locations 

provided the non-profit Good Jobs First. Good Jobs First began collecting this information in 

1988 and our Site Selection magazine cases start in 1982. We collect data from the Good Jobs 

First database for 1988-1997, as well as a set for 1988-1993. We retain only new plant locations 

(or expansions) that have a reported subsidy value in the data and further restrict this sample to 

highly incentivized, large establishments. We define “highly-incentivized” as having received a 

minimum of $250,000 in public inducements. We define “large” as promising at least 50 jobs or 

a minimum of $1,000,000 in new capital investment.  

We create two additional case sets by combining all Site Selection magazine and Good Jobs 

First cases for the periods 1982-1993 and 1982-1997. The combined sets provide better 

geographic coverage as well as larger sample sizes than when considering either source alone. 

The latter is particularly important for nonparametric and persistence exercises. We refer to these 

 
8 The GM MDP sample includes 82 total cases, but only 63 are manufacturing cases that can potentially be used 
the analysis. 
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as case-sets 2 and 3, respectively. 

Finally, we create a set of random large-establishment openings directly from Census 

microdata. We randomly sample large new firms appearing over the sample period, where large 

is defined as having initial employment above the 95th employment percentile for all new 

establishment births over 1982-1997. This set provides a nice benchmark to assess whether 

“new” firms in the Site Selection or Good Jobs First samples are different than a random “new” 

large firm regarding productivity spillovers. 

Table 1 summarizes the case sets described above.  

[Insert Table 1 approximately here] 

Table 2 presents the MDP-shock characteristics used in the analysis by case set. These 

represent a subset of the potential cases in each case set. We selected the subset of case set 1 

cases retained for analysis using the restricted-access GHM replication code provided by the 

Census Bureau. The subset of other case sets used in the final analysis was determined using the 

following criteria: 1) there is an establishment in the SSEL or LBD owned by the reported firm 

in the two years prior or three years after the plant opening announcement; 2) the SSEL/LBD 

establishment is located in the reported winning county or city; 3) there were incumbent plants in 

the winning county. 

It is clear from Table 2 that the highly-incentivized openings and expansions reported by Site 

Selection magazine and Good Jobs First are very large compared both to the winning counties in 

which they are located and compared to an average large new entrant in the micro data. Column 

1 reports that the GHM MDPs have (deflated) output that is, on average, 1.23 times larger than 

the initial value of output for all manufacturing establishments in the winning county, and 

(deflated) value-added that is 1.25 times larger. These plants employ 2,645 workers on average 

with average (deflated) payrolls of $143,000,000. The MDP ratio of other worker payroll to 

production worker payroll, which provides a potential measure of the human capital shock, is 

approximately 3 for the GHM MDPs. Adding additional MDPs that appear in the magazine as 

well as the highly-incentivized large plants openings reported in the Good Jobs First data yields 
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the MDP case set 2, which produce output that is, on average, an even larger share of initial 

winning county output than the GHM MDPs with fewer employees and smaller payrolls. Adding 

the 1994-1997 MDP cases to the case set 2 MDP shocks produces case set 3, which represent, on 

average, smaller output shocks than case sets 1 and 2. However, case set 3 employment lies 

between the case set 1 and 2 employment with average payroll that is higher than both. The 

payroll standard deviation is quite large, suggesting that higher than average payrolls are 

associated with some very high-paying MDPs. The standard deviation of other worker to 

production worker payrolls is also quite large. Taken together, these indicate at least a few high 

human capital MDPs in case set 3. 

[Insert Table 2 approximately here] 

It is interesting to note that the randomly drawn large new births represent a much smaller 

share of winning county output than the average highly incentivized large plant. These randomly 

selected new entrants also have much smaller employment levels but the highest average payroll 

among the case sets – indicating that the random large plant has much higher average wages than 

the typical highly incentivized large plant. However, the extraordinary standard deviation for 

payroll suggests this may be driven by some very high-paying plants. The mean and standard 

deviation of case set 4’s ratio of other worker payroll to production worker payrolls don’t 

indicate extraordinary non-production human capital shocks; thus, it is possible that these are 

particularly high-paying (high-skilled) production jobs. 

 

3. Estimates of MDP spillovers on incumbent plant productivity 

3.1. Counterfactual selection 

For comparability, we replicate the key spillover result in GHM. The GHM identification 

strategy relies on firms’ revealed rankings over potential locations as reported in Site Selection 

magazine’s regular feature “Million Dollar Plant” (MDP). While the authors make a strong 

prima facie case for the quasi-experimental research design, Patrick (2016) finds evidence that 
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the revealed “losers” are sub-optimal counterfactuals, with approximately one-third being 

affected by treatment (the firm closed a plant in the losing county in order to open the new 

plant). As shown in Appendix Table A4, exclusion of losers where the MDP’s firm closes a plant 

substantially reduces the estimated effects. We therefore explore results using alternative 

identification strategies described more below. The alternative strategies determine “losers” by 

geographic proximity to the “winner” and matching on observables and unobservables captured 

by industry locational advantage. In this study, “losers” must be located within a specified 

distance (100-250 miles) of the winning county (calculated as the distance between centroids) for 

each case.9,10 As a robustness check, we repeat this process for “losers” drawn from 50-100 miles 

away from the treated counties. The geographic proximity restriction conforms to the typical 

manufacturing site-selection process that first selects a specified geographic region, and then 

second, picks the specific locale within the larger region. Close geographic proximity ensures 

shared factor markets. It also minimizes the possibility that differences in input prices are 

captured in the productivity estimates (Atalay 2012). 

3.1.1. Revealed rankings 

We recreate the GHM counterfactual counties by using the replication code provided by the 

Census to identify their sample of MDPs, applying the criterion described above, and then match 

those to the losers listed in the appendix of GM. This process yields the same number of cases 

and losing counties reported in GHM. 

3.1.2. Geographically-proximate propensity score matches 

Our primary alternative strategy identifies “losers” by matching on observables. Each case’s 

 
9 Patrick (2016) uses 50-100 miles. As a robustness check, she analyzes all outcomes using matches located within 
100-250 miles of the winning county. The results were qualitatively and quantitatively similar. 
10 Henderson (2003) finds no evidence of significant agglomeration spillovers between firms beyond county 
borders. Using 100-250 miles excludes adjacent counties and any possibility of confounding MDP spillovers; yet 
counties are still close enough to reflect large unobserved productivity shocks such as transportation upgrades and 
human capital influxes that are not attributable to the MDP. 
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counterfactuals are the nearest two propensity-score neighbors to the winning county within 100-

250 miles. The covariates in the propensity-score matching-model are drawn from important 

determinants in agglomeration and site-selection research. The agglomeration literature suggests 

economic size, density, industry composition, transportation, wages, historical population 

growth, past employment growth, and other urbanization economies influence spillover effects 

(see Rosenthal and Strange 2004 for a review). Site-selection studies suggest many of these same 

factors influence the actual selection of the new facility’s location (Brouwer et al. 2002; 

Guimaraes et al. 2003; Devereux et al. 2007). Thus, the observable matching estimator is 

conditioned on the following known determinants of treatment and outcomes: total county 

population; presence of an interstate in the county; distance to the nearest metropolitan area; 

share of population that is working aged; minority share of total population; earnings per-

employed worker; historical population and employment growth; the share of total employment 

in manufacturing, farming, services, FIRE, and military; and case fixed effects. The historical 

variables account for historical geographic and agglomeration effects that would be key omitted 

effects otherwise (Duranton and Turner, 2011). We match on covariate values three-years prior 

to the new-plant’s opening. We use the county identifier associated with each plant in the ASM 

and CM to select counterfactual plants. 

3.1.3. Geographically-proximate location-quotient neighbors 

As another alternative identification strategy, we match on counties’ MDP-industry 

locational advantage as measured by the location quotient. As shown by Guimarães et al. (2009), 

the location quotient may be interpreted within the Ellison and Glaeser (1997) dartboard 

framework for measuring locational advantage. As such, plants in counterfactual counties with 

similar MDP-industry location quotients as “winner” counties should have access to similar 

observable and unobservable locational advantages. The location quotient also has the advantage 

of being easily calculated for counties from publicly available data.  
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Specifically, we construct industry i's location quotient in county c in year t as:  

𝐿𝑄𝑖𝑐𝑡 =

𝐸𝑚𝑝𝑖𝑐𝑡
𝐸𝑚𝑝𝑐𝑡

𝐸𝑚𝑝𝑖,𝑈𝑆,𝑡
𝐸𝑚𝑝𝑈𝑆,𝑡

, 

where industry is defined as the 2-digit SIC code. We then choose counterfactual counties for 

each case as the two counties within 100-250 miles of the winning county with the nearest 

location-quotient values to the winning-county’s case-MDP industry, measured three years prior 

to the MDP opening. We then use the county identifier associated with each plant in the ASM 

and CM to select the counterfactual plants from these counterfactual counties. 

3.2. Incumbent-plant samples 

 

As discussed below, our spillover estimating equations require plant-level data on the value 

of output, building & equipment capital stocks, and material inputs. These data are available in 

the restricted-use Census Annual Survey of Manufacturers (ASM) and Census of Manufacturers 

(CM). The value of capital stocks is not collected every year in the ASM/CMF; however, capital 

expenditure data is collected for surveyed plants. Using the perpetual-inventory method, stock 

and investment data may be used to construct the annual capital-stock variables. Alternatively, 

Foster, Grims, and Haltiwanger (2013) (FGH) construct the ASM-CMF Total Factor 

Productivity dataset and Beta Version 1.0 is available to researchers. This data includes TFP, 

capital stock, real input and output, and deflator data for most firms in the ASM-CMF 1972-

2010. We use the perpetual-inventory method and the raw ASM/CMF data to construct capital 

stocks for the GHM replication results. The remaining production-function estimates employ the 

FGH TFP Beta Version 1.0 capital stocks. 

To avoid changes in sample composition driving the results, incumbents must continuously 

appear in the data during the pre- and post-opening periods. The ASM sampling scheme rotates 

smaller plants and samples larger plants with more certainty. This means that the sample of 
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continuously-appearing incumbent plants is skewed towards larger and more economically-

important plants than the average U.S. plant. Table 3 presents summary statistics for the sample 

of incumbent plants by “treatment” (winner) status. Comparing (log) output and (log) labor by 

winner status within case sets, the samples are very well balanced. Also interesting is that the 

incumbent plant samples are relatively similar, on average, across case sets despite being 

associated with different winner and loser counties. This likely reflects the plant types that 

appear continuously in the data due to the ASM sampling scheme. The average number of 

continuously-appearing incumbent plants per county does vary across samples and winner status.  

[Insert Table 3 approximately here] 

Table 3 also presents the (rounded) number of counties from which the winner and loser 

incumbent plant samples are drawn as well as the number of unique counties in the data. For 

example, Table 3 reports that for the GHM replication sample (Case set 1 Winners and GHM 

Losers), the treated incumbent plants are drawn from approximately 50 counties and the 

counterfactual incumbent plants from approximately 80 counties, with approximately 100 unique 

counties between the two groups of winning and losing counties. As discussed below, 

identification of the parameters of interest in the replication equations rests on having overlap 

between cases and counties (i.e., a winner and loser appearing in the same county for different 

cases or the same county appearing with the same winner/loser status for more than one case) 

and that there are plants that continuously appear in those same (winner/loser) counties for more 

than one case. Table 3 demonstrates that all incumbent-plant samples meet this requirement and 

therefore, identification of our parameters is possible. 

 

3.3. GHM estimating equations 

We begin with GHM’s empirical specification. For incumbent plants in “winner” and 

“loser” counties for case j, we estimate log output Y in plant p, in industry i at time t as a function 

of inputs and the MDP effect with the following estimating equations: 
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(1) ln(𝑌𝑝𝑖𝑗𝑡) = 𝛽1 ln(𝐿𝑝𝑖𝑗𝑡) + 𝛽2 ln(𝐾𝑝𝑖𝑗𝑡
𝐵 ) + 𝛽3 ln(𝐾𝑝𝑖𝑗𝑡

𝐸 ) + 𝛽4 ln(𝑀𝑝𝑖𝑗𝑡) +

𝛿1(𝑊𝑖𝑛𝑛𝑒𝑟)𝑝𝑗 + 𝜅1(𝜏 ≥ 0)𝑗𝑡 + 𝜃1[1(𝑊𝑖𝑛𝑛𝑒𝑟)𝑝𝑗 × 1(𝜏 ≥ 0)𝑗𝑡] + 𝛼𝑝 + 𝜇𝑖𝑡 + 𝜆𝑗 +

휀𝑝𝑖𝑗𝑡 

(2) ln(𝑌𝑝𝑖𝑗𝑡) = 𝛽1 ln(𝐿𝑝𝑖𝑗𝑡) + 𝛽2 ln(𝐾𝑝𝑖𝑗𝑡
𝐵 ) + 𝛽3 ln(𝐾𝑝𝑖𝑗𝑡

𝐸 ) + 𝛽4 ln(𝑀𝑝𝑖𝑗𝑡) +

𝛿1(𝑊𝑖𝑛𝑛𝑒𝑟)𝑝𝑗 + 𝜓𝑇𝑟𝑒𝑛𝑑𝑗𝑡 + Ω[𝑇𝑟𝑒𝑛𝑑𝑗𝑡 × 1(𝑊𝑖𝑛𝑛𝑒𝑟)𝑝𝑗] + 𝜅1(𝜏 ≥ 0)𝑗𝑡 +

𝛾[𝑇𝑟𝑒𝑛𝑑𝑗𝑡 × 1(𝜏 ≥ 0)𝑗𝑡] + 𝜃1[1(𝑊𝑖𝑛𝑛𝑒𝑟)𝑝𝑗 × 1(𝜏 ≥ 0)𝑗𝑡] + 𝜃2[𝑇𝑟𝑒𝑛𝑑𝑗𝑡 ×

1(𝑊𝑖𝑛𝑛𝑒𝑟)𝑝𝑗 × 1(𝜏 ≥ 0)𝑗𝑡] + 𝛼𝑝 + 𝜇𝑖𝑡 + 𝜆𝑗 + 휀𝑝𝑖𝑗𝑡 

where 𝛼𝑝, 𝜇𝑖𝑡 , 𝑎𝑛𝑑 𝜆𝑗 are plant, industry, time, and case fixed effects, respectively, 𝐿𝑝𝑖𝑗𝑡 is labor 

production hours, 𝐾𝑝𝑖𝑗𝑡
𝐵  is the value of land and building capital, 𝐾𝑝𝑖𝑗𝑡

𝐸  is value of equipment, and 

𝑀𝑝𝑖𝑗𝑡is the value of materials. 𝑇𝑟𝑒𝑛𝑑𝑗𝑡 is a time trend, 1(𝑊𝑖𝑛𝑛𝑒𝑟)𝑝𝑗 is an indicator for being 

located in a winning county, 1(𝜏 ≥ 0)𝑗𝑡is an indicator for t being a year after the MDP opened, 

and 𝜏 is year normalized such that 𝜏 = 0 in the plant announcement year for each case. 

The parameters of interest are 𝜃1 and 𝜃2. Under Model 1, 𝜃1 measures the difference in 

mean outcome for winning counties after successfully attracting an MDP. Thus, it is basically the 

difference-in-differences estimator of the “treatment” (winning) effect on incumbent-plant 

output. Model 2 allows for both a mean shift in outcome, 𝜃1, and a differential trend in outcome, 

measured by 𝜃2, in the winning county after an MDP opening.  

It is important to note that Equations (1) and (2) include plant and case fixed effects as well 

as the standard treated-sample indicator, post-period indicator, and interaction variables in 

differences-in-differences equations. With plant and case fixed effects, the case fixed effect 

parameter is separately identified from the plant fixed effect parameters only when a set of plants 

corresponds to more than one case in the county. The 𝛿 parameter for 1(𝑊𝑖𝑛𝑛𝑒𝑟)𝑝𝑗 is identified 

by within-plant variation in winner status. In other words, 𝛿 is identified by plants that are in a 

winning county for at least one case and the same county is also a losing county for at least one 

case. If no county appears as both a winner and loser in a sample of cases, then 𝛿 cannot be 

identified from Equations (1) and (2). Similarly, the plant and case fixed effects can only be 



16 
 

separately identified for plants that appear as either a winner or loser for more than one case. The 

1(𝜏 ≥ 0)𝑗𝑡parameter 𝜅 is the mean difference in pre- and post-period within-plant TFP. The 

parameter 𝜅 can therefore only be identified for plants that appear both before and after the plant 

opening – or incumbent plants that remain for at least one period after the MDP opens. New 

entrants would not contribute to 𝜅's identification. 

GHM estimated Equations (1) and (2) for the sample of continuously appearing plants and 

we follow their methodology for comparability. With this strategy, the inclusion of counties that 

appear multiple times with either the same or different winner status is required for the county, 

case, and the winner-status dummy variables not to be perfectly collinear. This does not 

necessarily mean that the equations cannot be estimated, but it does change the interpretation of 

the results in light of the variation that identifies parameters. Appendix A demonstrates this issue 

using publicly available data. The main identification source for our parameters of interest comes 

from counties that are both a winner in one or more cases and also a loser in at least one case. 

The next major source of identification comes from differences between incumbent plants in 

counties that appear with the same status for more than one case. Because the case fixed effects 

can only be separately identified from the county fixed effects and DD indicators for counties 

that either appear more than once in the data as either a winner, loser, or both. Removing 

counties that appear as both a winner and loser changes the number of within-case comparisons 

and within-county variation identifying the estimates. The remaining identification comes solely 

from the pooled-time variation for counties that appear for only one case.  

It is also important to note that identification requires that for counties that appear for 

multiple cases, some plants continuously appear in the pre- and post-period data for all cases. 

These are stringent requirements. Counties have to appear as both a winner and loser within the 

case set and at least one of these counties must plants that continuously appear over the pre- and 

post-periods for the winning case and the losing case. If not, then the model is not fully 

identified. Point estimates therefore depend upon the solution to this “dummy variable trap”. 

Appendix A discusses this issue in detail and provides evidence on the consequences for 
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identification. 

Figure 1, Appendix Figures B1-B5, and Appendix Tables B1-B2 present the results of 

replicating the GHM test of identifying assumptions in their Table 4 and Figure 1 for all the 

samples of incumbent plants in Table 3. We use the replication code from GHM for this 

estimation. Each panel presents results for the sample of incumbents associated with each case 

set and identification strategy. Specifically, we estimate ln(𝑌𝑝𝑖𝑗𝑡) = 𝛽1 ln(𝐿𝑝𝑖𝑗𝑡) +

𝛽2 ln(𝐾𝑝𝑖𝑗𝑡
𝐵 ) + 𝛽3 ln(𝐾𝑝𝑖𝑗𝑡

𝐸 ) + 𝛽4 ln(𝑀𝑝𝑖𝑗𝑡) + 𝜃𝑤𝜏 ∑ [1(𝑊𝑖𝑛𝑛𝑒𝑟)𝑝𝑗 × 1(𝑡 = 𝜏)𝑗𝑡]5
𝜏=−7 +

𝜃𝑙𝜏 ∑ [1(𝐿𝑜𝑠𝑒𝑟)𝑝𝑗 × 1(𝑡 = 𝜏)𝑗𝑡]5
𝜏=−7 + 𝛼𝑝 + 𝜇𝑖𝑡 + 𝜆𝑗 + 휀𝑝𝑖𝑗𝑡 weighted by initial value of 

shipments. The coefficients Column 1 for each panel in the appendix tables presents the 

estimated difference between 𝜃𝑤𝜏 and 𝜃𝑤,−1, and likewise, Column 2 presents the estimated 

difference between 𝜃𝑙𝜏 and 𝜃𝑙,−1. Column 3 is the difference in these differences. The panels in 

Figures 1a-1e depict the estimated difference in these differences, or (𝜃𝑤𝜏 − 𝜃𝑤,−1) − (𝜃𝑙𝜏 −

𝜃𝑙,−1), and the 95% confidence interval. Appendix Figures B1-B5 depict the differences for 

winners and losers separately.   

[Inert Figures 1a-1e approximately here] 

Figures 1a and 1b present the relative year difference-in-differences for case set 1 winner 

relative to the revealed ranking and propensity score counterfactuals, respectively, and suggest 

general downward trend in the pre-period followed by an upward trend in the post-period. These 

effects are not statistically significant in Figure 1a for the revealed ranking strategy, but winning 

county establishments tend to have significantly higher TFP relative to the base year in a few of 

the pre-periods as well as a few of the post-periods compared to the differences in propensity-

score loser counties. Appendix Figure B1, Figure B2, and Table B1 reveal that this is driven 

predominantly by changes in winning counties.  Figures 1c-1e demonstrate that the relative-year 

difference-in-differences are generally statistically insignificant for case-sets 2, 3, and 4, 

respectively, with no discernable pre-period trends in the differences either. Taken together, 

these estimates suggest that counterfactual strategies perform reasonably well – although case-set 
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1 estimates may be less reliable than estimates for the other case sets.  

Tables 4 and 5 present the results of estimating equations 1 and 2 using each incumbent-

plant sample for our 4 case sets weighted by plant initial output, and unweighted, respectively. 

The reported mean shift is the equivalent of the 𝜃1 parameter from estimating equation 1 and the 

change after 5 years is calculated as 𝜃1 + 6𝜃2 from estimating equation 2. 

Table 4 Column 1 reports the results from our efforts to replicate the main GHM spillover 

estimates (GHM Table 5 Column 4). It suggests that (continuously-appearing) incumbent plants 

in winning counties did not experience a statistically-significant mean-productivity shift, but 

experienced a significant increase of almost 9% at five years. This is driven by breaks in 

previous productivity trends after the MDP opening relative to losing-county plants. Although 

Census Bureau restricted-access programs are used to replicate GHM’s results, our estimates 

differ slightly from their 5% mean shift and their 12% effect after 5 years. However, we verify 

statistically significant increases in winning-county incumbent-plant productivity relative to 

reported loser-county productivity. We find a similar effect for GHM MDP winning-county 

incumbents compared to incumbent plants in the nearest propensity-score neighbors. Table 4, 

Column 2 reports no statistically significant mean shift, but a significant increase at five years of 

almost 17%, which is larger than using GHM’s identification. Again, this is driven entirely by 

the post-opening trend-break depicted in Figures 1a and 1b.  

Table 4 Columns 3-5 indicate that the large change in incumbent plant productivity after 

five years may be unique to the particular set of GHM MDPs. Recall that case-set 2 includes the 

GHM MDPs as well as a subset of any MDPs reported by the magazine that weren’t in the GHM 

sample, as well as the highly-incentivized large-plant locations reported in the Good Jobs First 

Database. Despite having, on average, output that is a larger share of winning-county output than 

GHM MDPs, Table 4 Column 3 indicates that this MDP set did not generate significant 

productivity spillovers for continuously-appearing incumbent plants. Similarly, there is no 

significant productivity effect associated with randomly-drawn large new plant births (case-set 4 

results in Column 5).  
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[Insert Table 4 approximately here] 

In Table 4 Column 4, we find a more moderate 2% increase in productivity for the average 

plant in case-set 3 MDP winning counties after 5 years. Recall that case-set 3 plants include both 

GHM MDPs that appear in the magazine as well as a subset of Site Selection magazine and Good 

Jobs First MDPs through 1997. These MDPs represent a smaller share of winning-county output 

than GHM MDPs with few employees but much larger payrolls. Case-set 2 plants are a subset of 

case 3 plants, with the difference being plants associated with MDP cases from 1994-1997. Thus, 

the positive productivity shock could result from changing dynamics associated with incentives 

over time or higher human capital in new plants. That the productivity gains are small relative to 

the GHM winners may be attributable to upward wage pressure in winning counties after the 

MDP opening, incumbent firms losing human capital to new entrants, or other potential 

congestion forces. 

Table 5 repeats the estimations from Table 4 without weighting plants by their initial-

shipment value. These estimates may be thought of as estimates for the average case rather than 

average plant. In all cases, the significant changes in winning-county productivity disappear. 

This suggests that Table 4’s results may be driven by a few (of the already select sample) of 

continuously-appearing incumbent plants and that the average MDP does not generate significant 

positive productivity spillovers. Further, recall that most of the identification comes from a small 

subset of counties for multiple cases (as well as continuously appearing firms in the sample). 

[Insert Table 5 approximately here] 

Although the choice of counterfactuals ideally generates treatment assignment that is as 

good as random, there are still potential endogeneity sources that may present concerns. In 

particular, incumbent plant output, capital expenditure, labor, and material inputs are 

simultaneously determined by the firm and these decisions may also be affected by time-varying 

unobservables that affect both selection and incumbent-plant TFP. We follow the best practices 

outlined in Combes and Gobillon (2015) and estimate the spillover effects using a two-step 

procedure. We use a variant of the Combes et al. (2008, 2010) two-stage estimator adapted to a 
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production function and our context. Our preferred two-step method directly addresses the 

simultaneity of the output and inputs as well as firm heterogeneity using the Levinsohn-Petrin 

(2003) estimator in the first stage. 

 

3.4. Two-stage-fixed effect estimates  

In our variation of the Combes et al. (2008, 2010) two-stage procedure, we first estimate 

(3) ln(𝑌𝑝𝑖𝑗𝑡) = 𝛽1 ln(𝐿𝑝𝑖𝑗𝑡) + 𝛽2 ln(𝐾𝑝𝑖𝑗𝑡
𝐵 ) + 𝛽3 ln(𝐾𝑝𝑖𝑗𝑡

𝐸 ) + 𝛽4 ln(𝑀𝑝𝑖𝑗𝑡) + 𝐵𝑐(𝑗)𝑖𝑡 + 휀𝑝𝑖𝑗𝑡, 

where 𝐵𝑐(𝑗)𝑖𝑡 is a vector county-2 digit SIC code industry-time fixed effects. The first-stage 

estimates a production function weighted by the initial value of output and county-industry-year 

fixed effects. Note that equation (3) does not include a plant fixed effect as we cannot separately 

identify 𝐵𝑐(𝑗)𝑖𝑡with plant fixed effects included.  

We estimate the spillover effect in the second-stage with: 

(4) �̂�𝑐(𝑗)𝑖𝑡 = 𝛿1(𝑊𝑖𝑛𝑛𝑒𝑟)𝑐𝑗 + 𝜅1(𝜏 ≥ 0)𝑗𝑡 + 𝜃1[1(𝑊𝑖𝑛𝑛𝑒𝑟)𝑐𝑗 × 1(𝜏 ≥ 0)𝑗𝑡] + 𝜇𝑖𝑡 +

𝜆𝑗 + 𝜖𝑐𝑗𝑖𝑡, and 

(5) �̂�𝑐(𝑗)𝑖𝑡 = 𝛿1(𝑊𝑖𝑛𝑛𝑒𝑟)𝑝𝑗 + 𝜓𝑇𝑟𝑒𝑛𝑑𝑗𝑡 + Ω[𝑇𝑟𝑒𝑛𝑑𝑗𝑡 × 1(𝑊𝑖𝑛𝑛𝑒𝑟)𝑝𝑗] +

𝜅1(𝜏 ≥ 0)𝑗𝑡 + 𝛾[𝑇𝑟𝑒𝑛𝑑𝑗𝑡 × 1(𝜏 ≥ 0)𝑗𝑡] + 𝜃1[1(𝑊𝑖𝑛𝑛𝑒𝑟)𝑝𝑗 × 1(𝜏 ≥ 0)𝑗𝑡] +

𝜃2[𝑇𝑟𝑒𝑛𝑑𝑗𝑡 × 1(𝑊𝑖𝑛𝑛𝑒𝑟)𝑝𝑗 × 1(𝜏 ≥ 0)𝑗𝑡] + 𝜇𝑖𝑡 + 𝜆𝑗 + 𝜖𝑐𝑗𝑖𝑡. 

This strategy has benefits of the two-stage estimator outlined by Combes et al., but also has 

the added benefit of identifying our key parameters from a larger set of plants. The key 

parameters are still identified by plants in counties that appear for more than one case. However, 

identification now comes from all plants in those counties that continuously-appear for at least 

one case rather than only from plants that continuously-appear for all cases. 

The second-stage estimates from our variant of the Combes et al. (2008, 2010) two-step 

procedure outlined in equations 3-5 are presented in Table 6. The estimates in Table 6 continue 
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to indicate significant increases in productivity after 5 years associated with the GHM winner 

counties set 1. The revealed ranking estimate of 8.7% (Column 1) is virtually unchanged from 

the weighted estimate in Table 4; however, the estimated spillover identified by the propensity 

score losers is cut nearly in half to 8.9% (Column 2). Table 6 indicates no significant 

productivity spillovers for incumbent plants associated with the other 3 case sets.  

[Insert Table 6 approximately here] 

 

3.5. Two-stage Levinsohn-Petrin estimates 

Our preferred variant of the two-stage procedure allows us to explicitly address the potential 

endogeneity of inputs, reintroduce the plant fixed effect, and examine the full distribution of 

sample plants’ residual (log) TFP in the first-stage. Specifically, we first estimate  

(6) ln(𝑌𝑝�̃�𝑗𝑡) = 𝛽1 ln(𝐿𝑝�̃�𝑗𝑡) + 𝛽2 ln(𝐾𝑝�̃�𝑗𝑡
𝐵 ) + 𝛽3 ln(𝐾𝑝�̃�𝑗𝑡

𝐸 ) + 𝛽4 ln(𝑀𝑝�̃�𝑗𝑡) + 𝛼𝑝 + 휀𝑝�̃�𝑗𝑡 

using the Levinsohn-Petrin (2003) estimator. We then predict each plant’s residual and use a 

Gaussian kernel to estimate the distribution of TFP by winner status before and after the large 

plant opening. We then average residual TFP by county, 3-digit SIC code industry, and year to 

get 휀̅̂𝑐(𝑗)�̃�𝑡. The second-stage estimates the spillover effects using the predicted average residual 

TFP in each county-industry-year with 

(7) 휀̅�̂�(𝑗)�̃�𝑡 = 𝛿1(𝑊𝑖𝑛𝑛𝑒𝑟)𝑐𝑗 + 𝜅1(𝜏 ≥ 0)𝑗𝑡 + 𝜃1[1(𝑊𝑖𝑛𝑛𝑒𝑟)𝑐𝑗 × 1(𝜏 ≥ 0)𝑗𝑡] + 𝜇𝑖𝑡 +

𝜆𝑗 + 𝜖𝑐𝑗�̃�𝑡, and 

(8) 휀̅�̂�(𝑗)�̃�𝑡 = 𝛿1(𝑊𝑖𝑛𝑛𝑒𝑟)𝑝𝑗 + 𝜓𝑇𝑟𝑒𝑛𝑑𝑗𝑡 + Ω[𝑇𝑟𝑒𝑛𝑑𝑗𝑡 × 1(𝑊𝑖𝑛𝑛𝑒𝑟)𝑝𝑗] +

𝜅1(𝜏 ≥ 0)𝑗𝑡 + 𝛾[𝑇𝑟𝑒𝑛𝑑𝑗𝑡 × 1(𝜏 ≥ 0)𝑗𝑡] + 𝜃1[1(𝑊𝑖𝑛𝑛𝑒𝑟)𝑝𝑗 × 1(𝜏 ≥ 0)𝑗𝑡] +

𝜃2[𝑇𝑟𝑒𝑛𝑑𝑗𝑡 × 1(𝑊𝑖𝑛𝑛𝑒𝑟)𝑝𝑗 × 1(𝜏 ≥ 0)𝑗𝑡] + 𝜇𝑖𝑡 + 𝜆𝑗 + 𝜖𝑐𝑗�̃�𝑡. 

Before proceeding to spillover estimates, it is useful to examine all plants’ (unaveraged) 
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residual (log) TFP from a Levinsohn-Petrin estimator with plant and industry-year fixed effects. 

Figures 2-6 present the kernel density estimated distribution of plant residual TFPs by winner 

status before and after MDP openings. The second-stage estimates are still primarily identified 

by mean-residual TFP in counties that appear more than once, but distributions in Figures 2-6 

use information on all (continuously-appearing) incumbent plants in all winner and loser 

counties. 

Panel a of Figure 2 depicts the distribution for GHM winner and loser incumbent TFP before 

the MDP opening. The distributions are very similar except for the tails where there is little 

mass. The lowest productivity incumbents in loser counties have much lower residual TFP than 

those in winner counties. In the other tail, there are higher-productivity incumbents in winner 

counties than losers. The most notable change after the MDP opening (Panel b) is tighter 

distributions for both winner and loser incumbents, with much more mass around the mean and 

much shorter tails. It is also noteworthy that the lowest-productivity plant(s) are now in winner 

counties and the highest productivity plants are in loser counties. Figure 2 suggests that the 

plants identifying the large estimated changes in GHM winner productivity may not be 

representative of the relative differences in average winner and loser plant productivity after a 

large-plant shock. 

[Insert Figure 2 approximately here] 

Figure 3 contains the before and after distributions of residual TFPs for GHM winners 

compared to their nearest propensity-score losers. Again, the winner and loser distributions are 

quite similar, with the differences being in the tails. Comparing the distributions before and after 

reveals slightly less mass at the mean and a slightly longer low-productivity tail and shorter high-

productivity tail for winner counties. This may seem at odds with large, significant productivity 

spillovers estimated above. However, it is not at odds in other ways – it is entirely possible for 

plants identifying those estimates to move in the distribution of winner plants. 

 [Insert Figure 3 approximately here] 

The estimated distributions for case-sets 2-4 are presented in Figures 4-6, respectively. 



23 
 

Again, winners and losers generally have similar distributions within each case set. There are 

some particularly low-productivity incumbents in loser counties for case-set 2, as well as similar 

high-productivity winner and loser incumbents, resulting in less mass at the mean for losers in 

case set 2. This difference disappears after the MDP opening. Interestingly, there also appear to 

be more gains in the high productivity tail in winning counties than in losing counties. The 

opposite is true for case set 3 after the MDP opening and the gains are similar for the highest 

productivity winners and losers in case set 4. 

[Insert Figures 4-6 approximately here] 

Table 7 presents the second-stage estimates, where average county-3 digit industry-year 

residual TFP is regressed on our parameters of interest, 2-digit industry-year and case fixed 

effects. Consistent with the depictions in Figures 2-6, there is no statistically significant spillover 

associated with any set of MDPs.  

[Insert Table 7 approximately here] 

3.6. Two-stage LP estimates using LQ counterfactuals 

The geographically-proximate propensity-score matching strategy relies on observables; yet, 

unobservable locational advantages may also play a key role. We therefore repeat our preferred 

spillover estimator using counterfactuals that are the nearest MDP-industry location-quotient 

neighbors within 100-250 miles of the winner counties. Appendix B Table B1 contains summary 

statistics for the resulting incumbent-plant samples. It reveals that the location-quotient strategy 

produces a sample of loser incumbents that is very similar to winners in terms of output and 

labor; however, the losers tend to have fewer incumbent plants in total. Appendix Figures B1-B4 

present the estimates from an event-study specification of the second-stage equation (7). It is 

clear from the figures that our identifying assumptions are strongly satisfied, with very similar 

residual TFP pretrends for winner- and loser-county incumbents and no statistically significant 

differences.  

Table 8 presents the mean shift and change after 5 years estimated using the location-quotient 
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counterfactuals in the second–stage equations 7 and 8. The results are very similar to those in 

Table 7, with no statistically significant changes in incumbent-plant productivity in winning 

counties after the MDP opening. 

[Insert Table 8 approximately here] 

 

4. Non-parametric estimates of the agglomeration function 

Having established the size of spillovers associated with MDPs (or lack thereof), we now 

consider how estimated TFP changes with employment density in economically-close plants in 

the county. This also allows us to assess whether our preferred estimation strategy detects the 

agglomeration externalities that we expect given many interactions.  

We nonparametrically estimate the link between local plant density on plant output in a 

partially linear-regression model using Robinson’s (1988) double residual semiparametric 

regression estimator.11 We consider the following model of the log of plant output  

(9) ln(𝑌𝑝�̃�𝑗𝑡) = 𝛽1 ln(𝐿𝑝�̃�𝑗𝑡) + 𝛽2 ln(𝐾𝑝�̃�𝑗𝑡
𝐵 ) + 𝛽3 ln(𝐾𝑝�̃�𝑗𝑡

𝐸 ) + 𝛽4 ln(𝑀𝑝�̃�𝑗𝑡) + 𝛼𝑝 + 𝜇𝑖𝑡 + 휀𝑝�̃�𝑗𝑡 

estimated using the Levinsohn-Petrin (2003) estimator. Similar to the steps before, we then 

predict the residual for each plant and average them by county, 3-digit SIC code industry, and 

year to derive 휀̅̂𝑐(𝑗)�̃�𝑡. We then semiparametrically estimate spillover effects and the 

agglomeration function in the second-stage estimates using the predicted average residual TFP in 

each county-industry-year: 

(10) 휀̅�̂�(𝑗)�̃�𝑡 = 𝛿1(𝑊𝑖𝑛𝑛𝑒𝑟)𝑐𝑗 + 𝜅1(𝜏 ≥ 0)𝑗𝑡 + 𝜃1[1(𝑊𝑖𝑛𝑛𝑒𝑟)𝑐𝑗 × 1(𝜏 ≥ 0)𝑗𝑡] + 𝜆𝑗 +

𝑔 (𝑙𝑛 (
𝐸𝑖(𝑝),𝑗,𝑐(𝑗),𝑡−𝑠

𝑅𝑐(𝑗)
)) 𝜖𝑐𝑗�̃�𝑡, 

 
11 Robinson’s (1988) double residual semiparametric regression estimator is implemented in Stata with semipar 
and is more stable than Yatchew’s semi-parametric difference estimator (see Verardi and Debarsy 2012).  
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where 𝑔 (𝑙𝑛 (
𝐸𝑖(𝑝),𝑗,𝑐(𝑗),𝑡−𝑠

𝑅𝑐(𝑗)
)) is an unknown function of log (weighted) number of employees E 

per-square mile in plant p’s county c for case j, in year t-s. Local plant density is defined for each 

incumbent-plants’ industry-county-year combination, with weights determined by economic 

“closeness” between plant p and the establishment in which employees work. This is therefore an 

estimate of the agglomeration-function’s shape. It tells us how TFP varies with the density of 

economically-close plants regardless of the relationships with the MDP. Lagging local-plant 

density makes the model deterministic and prevents plants from producing wildly different 

output levels in any period purely by chance (Alexander and Ray 1998; Kline and Moretti 2014). 

The 𝜃1 and 𝛿 coefficients are identified as before.  Defining g(∙) in this way is comparable in 

spirit to Kline and Moretti (2014). 

We consider four definitions of local-plant density in which weights are determined by 

economic “closeness.” The first definition considers only own-industry density for p. The other 

three use supplier, customer, and labor linkages outlined in GHM to measure “closeness.” 

Industries are defined by their three-digit SIC codes.12 Own-industry plants are therefore 

establishments which belong to the same SIC code as the MDP. Supplier and customer industries 

are defined using the Bureau of Economic Analysis 1987 Input-Output Accounts. The similarity 

of shared labor inputs is determined as in Ellison et al. (2010), using the Bureau of Labor 

Statistic’s 1987 National Industrial-Occupation Employment Matrix (NIOEM). Similarity is 

determined through correlations of the fraction of each industry’s employment in each 

occupation in the NIOEM.  

Table 9 reports the mean and standard deviation of weighted employment density from 

equation 10, where the number of employees E per square mile in plant p’s county c for case j in 

year t-1 is weighted by the economic distance between plants’ 3-digit SIC industries, for each 

 
12 The post-2001 data contain 2007 and 2002 NAICS codes rather than SIC codes. We follow the MDP plants 
through time and assign the SIC codes from their earlier entries to their later entries. In order to calculate county-
industry share variables, we convert sample county plant NAICS codes to SIC codes. We use the NAICS-SIC 
crosswalks available on the RDC servers to convert the NAICS codes to SIC codes.   
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definition of economic closeness and case set by winner status and treatment period.13 Plant 

employment is calculated from the Longitudinal Business Database and includes employment 

from all plants in the county-year-industry rather than just continuously-appearing incumbents. 

[Insert Table 9 approximately here] 

Panel A contains weighted densities for the GHM winners and losers. It is interesting to note 

that all four measures of economically-close plant densities are higher for losing incumbents than 

winning incumbents prior to the large plant opening (Columns 2 and 3). Yet, this difference 

shrinks in the post-period due to an increase in economically-close plant densities for winning 

establishments and a decrease for losing establishments. Such coincident changes in underlying 

plant densities and the subsequent effect on incumbent-plant productivity is captured in the 

above spillover estimates that don’t directly control for changes in densities. To the extent that 

these employment-density changes are attributable to the MDP, then it is reasonable to consider 

these as part of the MDP effect. To the extent that they are attributable to other location-specific 

attributes (perhaps those that also attracted the MDP), then the above estimates overstate the 

spillover effects attributable to the MDP from the change in productivity attributable to the 

change in underlying economically-close plant densities. 

Examining Table 9 Panels B-E, we do not find such systematic differences by treatment 

status and period. In general, economically-close employment-density in winners and losers is 

less in the post-period than in the pre-period. This is consistent with increased automation 

decreasing manufacturing employment during the study period. It is also noteworthy that, with 

the exception of case-set 1, the pretreatment mean densities are quite similar for winner and loser 

incumbents.  

Consistent estimation of Equation (10) requires that lagged density is uncorrelated with 

contemporaneous, unobserved shocks. While it is possible this assumption holds, we address this 

possible source of endogeneity by instrumenting for lagged density. We use a deep-lag of 

 
13 All MDP plants and plants owned by the MDP firm are excluded from the employment density calculations. 
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historic market potential from 1940 as our instrument. The simple market potential measure is 

based upon population and income outside the county of interest and is a measure of the potential 

size of a firm’s market. As such, it is a good predictor of plant density due to historic transport 

costs and past firm location decisions, but uncorrelated with contemporaneous productivity 

shocks within the county.  In practice, we constructed our instrument as the inverse-distance-

squared, weighted sum of 1940 income for all counties within 500 miles of a given county. 

Figures 7-11 contain the semiparametric fit of mean county-industry-year residual TFP as a 

function of our four measures of economically-close plant employment density obtained by 

estimating equation 10 for the GHM winners and losers (Figure 7) and case-sets 1-4 using 

propensity-score losers (Figures 8-11, respectively). The fitted observations in Figures 7-11 can 

be interpreted as the shape of the agglomeration function with respect to each definition of 

economic proximity. 

Figure 7 suggests some non-linearities in the agglomeration function. The semiparametric fit 

of residual TFP with respect to own-industry and manufacturing-output customers both increase 

steadily until peaking at slightly over 100, and then decline. The mean (standard deviation) of 

own-industry and manufacturing-output customer density in this sample is 2.645 (11.05) and 

2.34 (10.78), suggesting that congestion forces begin to dominate agglomeration externalities at 

densities many standard deviations above the mean. The relationship between manufacturing-

input-supplier density and TFP in Figure 7 also suggests a potential non-linearity, with an 

approximately linear increase until around 30, at which point the slope sharply increases. The 

productivity increase associated with greater density of skilled employees, however, appears 

approximately linear.  

[Insert Figure 7 approximately here] 

Figure 8 depicts the semiparametric fit for case-set 1’s (GHM) winners and propensity-score 

losers. Figure 8 reveals a steady increase in county-industry-year mean residual TFP as all four 

measures of economically-close plant densities increase. Further, all four relationships appear 

approximately linear, with slightly steeper slopes associated with own-industry and 
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manufacturing-output customer densities. There is no evidence of a turning point at which 

congestion externalities begin to dominate agglomeration externalities associated with own-

industry and manufacturing-output customer density – likely because this sample does not 

contain county-industry-years for which own-industry and manufacturing-output customer 

densities exceed 100. Similarly, we do not observe a sharp increase in the manufacturing-input-

supplier density slope because we don’t observe any plants exceeding a density of 30.  

[Insert Figure 8 approximately here] 

The shape of the agglomeration functions estimated from case-set 2 are illustrated in Figure 

9. The relationships generally appear linear, except for the sharp increase in slope associated 

with manufacturing-input-supplier density around 30. This is the same relationship observed in 

Figure 7 and similarly represents a density several standard deviations higher than the sample 

mean.  

[Insert Figure 9 approximately here] 

Figure 10 contains the estimated relationship between residual TFP and economically-close 

employment densities for case-set 3. The increase in the slope associated with manufacturing-

input-supplier density around 30 also appears in Figure 10, although the estimates at such high 

densities are noisy. Similar to Figure 8, the TFP gains from increases in manufacturing-output 

customers peak around 100 and then decline before recovering. The increases in TFP associated 

with increased own-industry and share of skilled employees appear approximately linear. 

[Insert Figure 10 approximately here] 

On the other hand, the only indications of nonlinearity for case-set 4 in Figure 11 come from 

the estimated residual-TFP changes as a function of own-industry and skilled-worker-share 

densities. Rather than peaking at an own-industry density of 100 like Figure 7, Figure 11 

indicates a sharp increase in slope that peaks at just over 200 before declining to become 

negative. Agglomeration externalities appear to dominate congestion externalities again around 

450 – a level of own-industry density unobserved in previous samples. Congestion effects 

overtake agglomeration benefits again at a density of 550, with steady declines in residual TFP 



29 
 

as own-industry densities increase beyond that point. The nonlinearity associated with shared 

labor density also appears only at densities unobserved in other samples. There is a linear 

increase in residual TFP from greater shared labor densities until around 1000, where there is a 

sharp increase in slope that peaks just before 2000, before steadily declining. 

[Insert Figure 11 here] 

Taken together, Figures 7-11 suggest that we cannot reject linear agglomeration functions over 

the range of densities observed for most plants. Nonlinearities in the agglomeration functions 

appear at very high densities – around own-industry and manufacturing-output-customer 

densities of 100, manufacturing-input-supplier densities around 30, and shared-labor densities of 

1000.  

5. Lasting effects 

Although Section 3 suggests weaker than expected spillovers for incumbent plants, Section 4 

establishes that there are positive agglomeration externalities for these plants that are consistent 

with models featuring long-lasting effects from shocks, but at ranges of “agglomeration” 

densities far above the range that is commonly observed in local economies. We therefore turn to 

the question of long-run effects by estimating the persistence of the MDP output shocks with 

respect to the location’s place in the distribution of U.S. manufacturing activity. This analysis 

uses all plants in the county and therefore includes new entrants, deaths, and smaller 

establishments that are excluded in previous sections. In the appendix, we take extend this 

analysis to a multiple-equilibria setting. Finally, we look specifically at the twenty-year effects 

on new establishment births and deaths. 

5.1. Persistence Methodology 

We examine the change in county-manufacturing and county-manufacturing-industry shares 

of national manufacturing and manufacturing-industry after 20 years using the methodologies 

developed in Davis and Weinstein (2002; 2008) and Bosker et al. (2007). We define county-
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manufacturing (log) share at time 𝜏 in county c receiving MDP shock j as its location quotient 

𝑠𝑐(𝑗)𝜏 ≡ ln(𝑆𝑐(𝑗)𝜏) = ln (
𝑚𝑎𝑛𝑢𝑓𝑎𝑐𝑡𝑢𝑟𝑖𝑛𝑔 𝑜𝑢𝑡𝑝𝑢𝑡𝑐(𝑗)𝜏

𝑚𝑎𝑛𝑢𝑓𝑎𝑐𝑡𝑢𝑟𝑖𝑛𝑔 𝑜𝑢𝑡𝑝𝑢𝑡𝑈𝑆𝜏
).14 Assuming a unique, stable equilibrium, 

county manufacturing shares at time 𝜏 can be modeled as 𝑠𝑐(𝑗)𝜏 = Π𝑐(𝑗) + 휀𝑐(𝑗)𝜏, where Πc(j) is 

the initial equilibrium size in county c and 휀𝑐(𝑗)𝜏 is a location-specific shock to a local 

areas’manufacturing share. Persistence of shocks takes the form 휀𝑐(𝑗),𝜏+1 = 𝜌휀𝑐(𝑗),𝜏 + 𝜈𝑐(𝑗),𝜏+1, 

where 𝜌 ∈ [0,1) is the persistence parameter.  

Let 𝑣𝑐(𝑗),5 be the MDP shock to county output during the first-five years after opening and 

𝑣𝑐(𝑗),20 be the typical idiosyncratic location-specific shock to manufacturing share around the 

new post-MDP equilibrium 𝑠𝑐(𝑗),20.15As shown in Davis and Weinstein (2002), our equation for 

the effect of the MDP shock to winning-county c(j)’s share of manufacturing output becomes:  

(11) 𝑠𝑐(𝑗),20 − 𝑠𝑐(𝑗),5 = (𝜌 − 1)𝜈𝑐(𝑗),5 + [𝜈𝑐(𝑗),20 + 𝜌(1 − 𝜌)휀𝑐(𝑗),−5],16  

where the term in brackets is the error term, which is assumed uncorrelated with the MDP shock. 

We use Census microdata on the large firm locations and therefore know the size of the MDP 

shock. We define the MDP shock as 𝑀𝐷𝑃𝑠ℎ𝑜𝑐𝑘 = max(𝑀𝐷𝑃 𝑜𝑢𝑡𝑝𝑢𝑡𝑐(𝑗)𝜏) , 𝜏 ∈ (0,5), or the 

maximum amount of output reported by an MDP-owned firm in the winning county from the 

announcement date through the first-five-full years of operation, by which time we expect the 

MDP to be at its stable size. We then define the shock to winning county output shares as 

𝜈𝑐(𝑗),5 ≡ 𝑀𝐷𝑃𝑠ℎ𝑜𝑐𝑘/𝑜𝑢𝑡𝑝𝑢𝑡𝑐(𝑗),−1, which we can relate to the growth rate in the winning-

county manufacturing shares during this period by noting 𝑠𝑐(𝑗),5 − 𝑠𝑐(𝑗),−1 ≈

(

𝑚𝑓𝑔 𝑜𝑢𝑡𝑝𝑢𝑡𝑐(𝑗),−1+𝑀𝐷𝑃 𝑜𝑢𝑡𝑝𝑢𝑡𝑐(𝑗),5

𝑚𝑓𝑔 𝑜𝑢𝑡𝑝𝑢𝑡𝑈𝑆,−1
 − 

𝑚𝑓𝑔 𝑜𝑢𝑡𝑝𝑢𝑡𝑐(𝑗),−1

𝑚𝑓𝑔 𝑜𝑢𝑡𝑝𝑢𝑡𝑈𝑆,−1
𝑚𝑓𝑔 𝑜𝑢𝑡𝑝𝑢𝑡𝑐(𝑗),−1

𝑚𝑓𝑔 𝑜𝑢𝑡𝑝𝑢𝑡𝑈𝑆,−1

) =
𝑀𝐷𝑃 𝑜𝑢𝑡𝑝𝑢𝑡𝑐(𝑗),−1

𝑚𝑓𝑔 𝑜𝑢𝑡𝑝𝑢𝑡𝑐(𝑗),−1
. 

The persistence test rests on the value of 𝜌. If 𝜌 = 1, then the shock is permanent and shares 

follow a random walk (i.e., the shock leads to a new equilibrium). If 𝜌 = 0, then the shock 

 
14 We measure the location’s manufacturing-output share from the data using all reporting plants. 
15 Using the first-five years after the opening of an MDP plant to make an assessment of its effects follows GHM. 
16 As suggested in Bosker et al. (2007), we use growth rates constructed as 

𝑥𝑡−𝑥𝑡−𝑖

𝑥𝑡−𝑖
, rather than ln(𝑥𝑡) − ln (𝑥𝑡−𝑖) 

because the latter is only a valid measure of growth for small changes. 
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dissipates fully. 0 ≤ 𝜌 < 1 suggests a mean-reverting process and we can reject manufacturing 

shares following a random walk. This may or may not be consistent with multiple equilibria.  

It is possible that 𝜌 ≠ 0 because of some correlation between future changes in county-

manufacturing shares and past changes that we do not model. Thus, we include pre-MDP 

opening growth in the county’s manufacturing share as a control in the estimating equation. It is 

also possible that MDP shocks are correlated with the error term and we cannot obtain a 

consistent estimate of 𝜌 by directly estimating (10). Instead, we instrument for the MDP shock 

using average national-establishment output for firms in the MDP’s 4-digit SIC industry and 

average national new-entrant output in the MDP’s 3-digit industry in time 𝜏 = −1, expressed as 

a share of the initial winning county’s manufacturing output. We use instruments from 𝜏 = −1 to 

avoid any concerns that the MDP’s output decision or announcement influence other firms’ 

output decisions.17 Our estimating equation therefore becomes: 

(12) 𝑠𝑐(𝑗),20 − 𝑠𝑐(𝑗),5 = 𝛼�̂�𝑐(𝑗),5 + 𝛽0 + 휁𝑃𝑟𝑒𝑀𝐷𝑃𝑐(𝑗) + 𝑒𝑟𝑟𝑜𝑟𝑐(𝑗)
18,  

where 𝛼 = 𝜌 − 1 and 𝑃𝑟𝑒𝑀𝐷𝑃𝑐(𝑗)is the pre-MDP opening growth in county manufacturing 

share. Under the null of hypothesis of a unique equilibrium, the coefficient on the instrumented 

MDP shock (�̂�𝑐(𝑗),5) equals minus one.  

Equation (12) requires a comparison of winning-county shares of national-manufacturing 

output over time. We construct these shares from the restricted-access Census of Manufacturers 

(CM). We remove any plants owned by the MDP firms from the micro data and then aggregate 

the microdata by county-year and county-industry-year. We require years that are not CM years 

and therefore linearly interpolate between CM years for each county and the nation as a whole. 

We do not construct shares from ASM data for these years because the ASM sampling scheme 

 
17 In the spirit of Bosker et al. (2007), we considered a geographical extension and used the distance-weighted 
change in surrounding county manufacturing shares as an instrument; however, conditional on our other 
instruments and controls, this had little power in the first-stage and we therefore report estimates using MDP 
industry-output instruments. 
18 We include a constant to allow for the possibility that the error is not mean zero, i.e., shares do not add to one.  
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described above could introduce errant variation in shares. 

5.2. Persistence and Multiple Equilibria Results 

Tables 10 and 11 presents the results of instrumental-variable estimation of equation (12) for 

the persistence parameter of the MDP shock. The tables also report tests of the null of a unique 

equilibrium by testing whether the coefficient on the MDP shock is minus unity. Table 10 

examines winning-county manufacturing shares and Table 11 considers winning-county 

manufacturing shares by industry, with columns representing case-sets 1, 2, 3, and 4, 

respectively. Appendix Tables D1-D8 report the multiple equilibria analyses.  

Table 10 presents the manufacturing share results. Column 1 reports the results for case-set 

1’s winning counties, the counties receiving the GHM MDP shocks. Recall that this was the only 

case set for which we estimated positive spillovers and therefore the most likely candidate for 

persistent effects. We can reject that the coefficient on the MDP shock is minus unity in the IV 

specification reported in Table 10 Column 1. In other words, we can reject that 𝜌 = 0 and that 

the shock fully dissipates. Yet, with 𝛼 = 𝜌 − 1 statistically indistinguishable from zero, the 

shock appears highly persistent. As Davis and Weinstein describe, we can also interpret this as a 

rejection of the null of a unique equilibrium. However, Appendix Table D1 places a unique 

equilibrium within the same framework as multiple equilibria and the data most strongly support 

a unique equilibrium despite the IV model’s rejection of the unique-equilibrium null.  

[Insert Table 10 approximately here] 

Table 10 Column 2 presents the results for county winners from case-set 2 MDPs, which 

represented the largest share of winning-county output, on average, in our samples of MDP 

cases. Here, we can also reject the null hypothesis that the coefficient on the MDP shock is 

minus unity. Again, this suggests that the shock is quite persistent. It also suggests that we can 

reject the null hypothesis of one unique equilibrium, the threshold regressions in Appendix Table 

D2 suggest that the unique-equilibrium specification better describes the data than any of the 

multiple equilibria specifications. 
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Table10 Columns 2 and 3 present the results for case-sets 3 and 4, respectively. In both cases, 

the IV specification indicates that we can reject the null of a unique equilibria, but the Schwarz 

criterion test of multiple-equilibria suggests these case sets are unique-equilibria specification. 

The rejection of the coefficient on the MDP shock as equal to minus unity in the IV 

specifications suggests that 𝜌 ≠ 0, which is the assumption imposed by our multiple equilibria 

tests. However, the estimated coefficients are positive suggesting that 𝜌 > 0. As discussed in 

Davis and Weinstein (2008), 𝜌 > 0 would work to bias our multiple-equilibria tests in favor of 

finding multiple equilibria. Even so, the fact that the data are still best described by the unique-

equilibrium specification provides even stronger evidence in support of a unique equilibrium. 

Although the results do not indicate that these shocks are large enough to push the location to a 

new-equilibrium manufacturing share, the IV estimates do indicate that the shocks are persistent 

and push winning-county manufacturing output higher for a “lengthy” period. 

Table 11 reports analogous estimates for county MDP-industry shares rather than overall 

manufacturing shares. Now we are instead assessing whether multiple equilibrium applies more 

narrowly to the MDP’s industry rather than for overall manufacturing. The sample of winning 

counties decreases for this case because it is limited to those winning counties that had pre-

existing establishments in the MDPs own 3-digit SIC industry. We reject the null of a 𝜌 = 0 for 

all 4 case sets. Yet, the data still most strongly supports a unique equilibrium when analyzed 

within the same framework as multiple equilibria for case-sets 1-3 (Appendix Tables D5-D7). 

Interestingly, the data most strongly support multiple equilibria for case-set 4 (Table D8), with 

the two-equilibria specification maximizing the Schwarz criterion and passing the intercept 

ordering criterion that requires a larger positive shock be associated with larger, new equilibrium 

share and that the thresholds lie between equilibrium shares. 

[Insert Table 11 here] 

Recall that case-set 4 is the set of randomly drawn largest employers in the micro data – not a 

set of highly-incentivized large plants. These large plant shocks had, on average, much smaller 

output and employment shocks than the highly-incentivized-plant sets. However, they had much 
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larger payroll shocks, potentially suggesting greater shares of highly-skilled employees and 

higher labor productivity. Thus, it is possible that it is the size of the human capital shock, rather 

than the size of the output shock, that matters most for pushing a location to a new-equilibrium 

share of the manufacturing-industry’s output. The fact that the data does not support multiple 

equilibria for case-set 3 shocks, which also have at least some high human capital MDPs, casts 

some doubt on this. Instead, it may be that multiple equilibria are supported precisely because 

the case-set 4 shocks are not highly-incentivized and thus forego some of the general equilibrium 

congestion costs, crowd-out effects, and moral hazard effects associated with incentives.   

 

5.3. Births and Deaths 

In order to better understand the dynamics associated with our persistence findings, we 

examine manufacturing-establishment births and deaths in our winner and loser counties. We use 

the restricted-access Longitudinal Business Database (LBD) to identify new, manufacturing-

establishment births and deaths in those counties. Figures 12-15 depict the mean (log) number of 

births and deaths in winner and loser counties by year relative to the MDP opening. 

Figure 12 reveals GHM winner counties have fewer manufacturing births and deaths, on 

average, than GHM loser counties. These results are consistent with Partridge, Schreiner, 

Tsvetkova, and Patrick’s (2020) findings that greater overall intensity in tax incentives aimed at 

(mainly large) firm attraction had rather large crowding-out effects on business startups. Figure 

12 indicates that winner and loser birth trends are approximately parallel after the MDP opening, 

with, perhaps, a slightly slower decline in winning counties. On the other hand, the pre-opening 

death trends in winner and loser counties are remarkably parallel and winner counties appear to 

experience a sharp uptick in establishment-death rates after the MDP opening. This is consistent 

with a creative destruction process for less-productive firms, as well as congestion costs related 

to large plant shocks and incentives. It also suggests that surviving plants that continuously-

appear in the data are likely higher-productivity plants, meaning that some of the relative gains in 
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winner counties may be a composition effect from the death of lower-productivity plants. 

GHM winner counties also experienced fewer births and deaths, on average, than their 

propensity-score counterfactual counties – although the difference is smaller. Figure 13 suggests 

slight differences in pretrends and fairly parallel trends after the MDP-opening.  

[Insert Figures 12-16 approximately here] 

Figures 14-16 indicate that winning counties experienced more births and deaths, on average, 

than their propensity-score neighbors. The figures generally suggest similar pretrends and birth 

trends after the MDP opening. Although not as dramatic as with the GHM sample, there is some 

indication of a slight increase in the establishment-death rates in winning counties after the 

opening, which again likely increases overall county productivity, but offsets job growth.  

To provide a more formal test of MDP-induced changes in county births and deaths, we 

estimate ln(𝑏𝑖𝑟𝑡ℎ𝑠)𝑐𝑗𝑡 = 𝛿1(𝑊𝑖𝑛𝑛𝑒𝑟)𝑐𝑗 + 𝜅1(𝜏 ≥ 0)𝑗𝑡 + 𝜃1[1(𝑊𝑖𝑛𝑛𝑒𝑟)𝑐𝑗 × 1(𝜏 ≥ 0)𝑗𝑡] +

𝜆𝑗 + 𝜖𝑐𝑗𝑡 for the five years prior and twenty years after the MDP opens. We estimate an 

analogous equation for establishment deaths.  

Table 12 presents the birth specification estimates. The results paint a uniformly bleak picture 

with regards to large new plant openings and establishment births, i.e., successfully luring an 

MDP is associated with either no increase or a significant decrease in establishment births. 

Although imprecisely measured, Columns (1) –(3) suggest either an economically small increase 

or relatively large decrease in new manufacturing-establishment births after an MDP opens. 

Columns (4) and (5) indicate a decrease of 6 and 9 percent, respectively. This is consistent with 

the idea of crowding-out effects associated with these new MDPs and inconsistent with the 

notion that they induce significant new economic activity. 

There is mixed evidence regarding death rates in Table 13. Columns (1) and (2) indicate an 

imprecisely measured increase in establishment deaths in GHM MDP winning counties. Again, 

this supports the idea of MDP- or incentive-induced costs borne by existing establishments. 

Columns (3)-(5), on the other hand, suggest fewer establishment deaths – albeit, economically 

small and imprecise for case-sets 2 and 3. Column 5 reports a significant 5 percent decline in 
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deaths in counties that attracted one of the random new, large manufacturing establishments. 

However, this reduction in deaths does not completely offset the decline in births.  

Taken together, the evidence in this section clearly illustrates how successful attraction of one 

highly-incentivized large new facility fails to have “positive” long-run effects through indirectly 

inducing births or foregoing deaths.  

 

6. Conclusions 

We verify significant spillovers from GHM MDP openings, leading to five-year cumulative 

changes in incumbent-plant productivity, albeit without the large mean-shift GHM found. 

However, these spillovers are driven by a unique set of plants that operate continuously in a 

county. These plants also appear for more than one winning and/or losing case. The results from 

this unique set of MDP openings are not robust to alternative identification strategies. Our results 

further suggest much weaker spillovers associated with other highly-incentivized MDP openings, 

but again, these effects are identified from a unique set of plants driven by the empirical strategy. 

These findings are consistent with ideas that agglomeration externalities are a function of many 

interactions and adding one establishment (even very large ones) is unlikely to produce large 

changes in overall productivity levels. We do, however, find that TFP rises as interactions with 

economically-close plants increase. This is consistent with agglomeration-externality models 

possessing persistent effects from shocks and multiple equilibria. 

We find some evidence that GHM MDP shocks have persistent, positive effects on winning-

county manufacturing shares and manufacturing output. While we cannot rule out multiple 

equilibria, the data generally support one unique, equilibrium county manufacturing share. Thus, 

our results suggest that even in the presence of significant spillovers for some plants, large-plant 

openings are not sufficiently large positive shocks to push locations into a new equilibrium. We 

also find no evidence that the persistent output effects of the MDP shocks are driven by MDP-
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induced births or deaths. If anything, MDPs appear to induce fewer births in winning counties 

that are not offset by reductions in deaths. This may be due to countervailing congestion forces 

or weaker than anticipated spillovers, or both. Yet, the loss of innovation and jobs from fewer 

net-startups offset at least some of the supposed gains from MDP attraction.  
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Guimarães, Paulo, Octávio Figueirdo, and Douglas Woodward. 2003. A tractable approach to the 

firm location decision problem. Review of Economics and Statistics 85 (1): 201-4.  

Hellerstein, Judith K., David Neumark, and Kenneth R. Troske. 1999. Wages, productivity, and 

worker characteristics: Evidence from Plant‐Level production functions and wage equations. 

Journal of Labor Economics 17 (3): 409-446.  

Henderson, J. Vernon. 2003. Marshall's scale economies. Journal of Urban Economics 53 (1): 1-

28.  

Henderson, J. Vernon. 1997. Externalities and industrial development. Journal of Urban 

Economics 42: 449–470.  

Isard, Walter. 1951. Regional and Interregional Input-Output Analysis: A Model of a Space-

Economy. Review of Economics and Statistics. 33: 218-228.  

Kilkenny, Maureen and Mark Partridge. 2009. Export Sectors and Rural Development. American 

Journal of Agricultural Economics. 91: 910-929. 

http://ideas.repec.org/p/tor/tecipa/tecipa-370.html
http://ideas.repec.org/p/tor/tecipa/tecipa-370.html


39 
 

Kline, Patrick and Enrico Moretti. 2014. Local Economic Development, Agglomeration 

Economies, and the Big Push: 100 Years of Evidence from the Tennessee Valley Authority. 

Quarterly Journal of Economics 129(1): 275-331. 

List, John A., Daniel L. Millimet, Per G. Fredriksson, and W. Warren McHone. 2003. Effects of 

Environmental Regulations on Manufacturing Plant Births: Evidence from a Propensity 

Score Matching Estimator. The Review of Economics and Statistics 85 (4): 944-52.  

Levinsohn, James and Amil Petrin. 2003. Estimating Production Functions Using Inputs to 

Control for Unobservables. The Review of Economic Studies 70(2): 317-341. 

Moretti, E. 2010. Local Multipliers. American Economic Review. 100: 373-377.  

Moretti, Enrico. 2004. Workers' education, spillovers, and productivity: Evidence from plant-

level production functions. American Economic Review 94 (3) (06): 656-90.  

Olley, G. Steven and Ariel Pakes. 1996. The Dynamics of Productivity in the 

Telecommunications and Equipment Industry. Econometrica 64(6): 1263-1297. 

Partridge, Mark., Sydney Schreiner, Alexandra Tsvetkova, and Carlianne Patrick. 2020. The 

effects of state and local economic incentives on business start-ups in the United States: 

County-level evidence. Economic Development Quarterly. 34(2): 171-187 

Patrick, Carlianne. 2016. Identifying the Local Economic Development Effects of Million Dollar 

Facilities. Economic Inquiry 54(4): 1737-1762. 

Redding, Stephen, Daniel M. Sturm, and Nikolaus Wolf. 2011. History and Industry Location: 

Evidence from German Airports. Review of Economics and Statistics 93(3): 814-831. 

Reporter, Louise Story. 2012. As Companies Seek Tax Deals, Governments Pay High Price. The 

New York Times, December 1, 2012. 

Robinson P.M. 1988. Root-N-consistent semiparametric regression. Econometrica 56: 931-954. 

Rosenthal, Stuart S. and William C. Strange. 2004. Evidence on the Nature and Sources of 

Agglomeration. In Handbook of Urban and Regional Economics 4, edited by J. Vernon 

Henderson and Jacques-François Thisse. Amsterdam: North-Holland. 

Santa Fe Institute. "How long do firms live? Finding patterns of company mortality in market 

data." ScienceDaily. www.sciencedaily.com/releases/2015/04/150401132856.htm (accessed 

September 5, 2019). 

Schwarz, Andrew. 2018. The Realities of Economic Development Subsidies. Center for 

American Progress. Last accessed September 18, 2019 at 

https://cdn.americanprogress.org/content/uploads/2018/11/02093311/Economic-

Development-Incentives-brief-4.pdf 

Syverson, Chad. 2011. What Determines Productivity? Journal of Economic Literature 49(2): 

326-365. 

Tiebout, Charles. 1956. Exports and regional economic growth. Journal of Political Economy. 

64(2): 160–164. 

Van Dijk, Jasper. 2018. Robustness of Econometric Multipliers. Journal of Regional Science. 58: 

281-294.  

2012. Robinson’s square root of N consistent semiparametric regression estimator in Stata. The 

Stata Journal 12(4): 726-735. 

Wren, Colin. 2012. Geographic concentration and the temporal scope of agglomeration 

economies: An index decomposition. Regional Science and Urban Economics 42: 681-690. 



Patrick and Partridge Online Appendix p.1 
 

FOR ONLINE PUBLICATION 

Identifying Agglomeration Spillovers: New Evidence from Large Plant Openings 

Appendix 

Carlianne Patrick1 

Mark Partridge2 

 

A. GHM Specification and Counterfactual Identification Demonstration 

To demonstrate the identification issues raised by the specification and revealed rankings 

counterfactuals, I obtain total county level employment data from the County Business Patterns 

and match it to the full set of manufacturing winner and loser counties in for 64 cases. I 

summarize the specifications and results below.3 

As can be gleaned from Table A1, 59 counties in the data appear as a winner for at least one 

of the 64 cases, 82 counties appear as losers, and six counties win at least one MDP competition 

and loser at least one other. Table A2 reveals that 4 counties win more than one sample case and 

11 counties are losers in two cases.  

Table A1: Summary of Counties and Winner Status 

 Loser Total 

Winner 0 1  

0 0 76 76 

1 53 6 59 

Total 53 82 135 

 

  

                                                           
1 Associate Professor, Department of Economics, Georgia State University, cpatrick@gsu.edu 
2 Professor, Swank Chair in Urban Rural Policy, Department of AED Economics, The Ohio State University, 

partridge.27@osu.edu 

3 To replicate the analysis summarized below, the data, Stata code, and log files may be accessed here. 

https://www.dropbox.com/sh/9oxp0gmxddfempo/AAAgoQGWb69lqa1ODIt8CT8ea?dl=0
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Table A2: Frequency of Counties’ Winner Status 

 Frequency Percent 

Winner   

0 78 56.30 

1 55 40.74 

2 4 2.96 

Total 135  

Loser   

0 53 39.26 

1 71 52.59 

2 11 135 

Total 135  

 

The inclusion of counties that appear as both a winner and loser as well as counties with the 

same status more than once is important for identification in a difference-in-differences 

specification with both county and case fixed effects. To see this, recall the GHM plant 

specifications specification in Equations (1) and (2): 

(1) ln(𝑌𝑝𝑖𝑗𝑡) = 𝛽1 ln(𝐿𝑝𝑖𝑗𝑡) + 𝛽2 ln(𝐾𝑝𝑖𝑗𝑡
𝐵 ) + 𝛽3 ln(𝐾𝑝𝑖𝑗𝑡

𝐸 ) + 𝛽4 ln(𝑀𝑝𝑖𝑗𝑡) +

𝛿1(𝑊𝑖𝑛𝑛𝑒𝑟)𝑝𝑗 + 𝜅1(𝜏 ≥ 0)𝑗𝑡 + 𝜃1[1(𝑊𝑖𝑛𝑛𝑒𝑟)𝑝𝑗 × 1(𝜏 ≥ 0)𝑗𝑡] + 𝛼𝑝 + 𝜇𝑖𝑡 + 𝜆𝑗 +

휀𝑝𝑖𝑗𝑡 

(2) ln(𝑌𝑝𝑖𝑗𝑡) = 𝛽1 ln(𝐿𝑝𝑖𝑗𝑡) + 𝛽2 ln(𝐾𝑝𝑖𝑗𝑡
𝐵 ) + 𝛽3 ln(𝐾𝑝𝑖𝑗𝑡

𝐸 ) + 𝛽4 ln(𝑀𝑝𝑖𝑗𝑡) +

𝛿1(𝑊𝑖𝑛𝑛𝑒𝑟)𝑝𝑗 + 𝜓𝑇𝑟𝑒𝑛𝑑𝑗𝑡 + Ω[𝑇𝑟𝑒𝑛𝑑𝑗𝑡 × 1(𝑊𝑖𝑛𝑛𝑒𝑟)𝑝𝑗] + 𝜅1(𝜏 ≥ 0)𝑗𝑡 +

𝛾[𝑇𝑟𝑒𝑛𝑑𝑗𝑡 × 1(𝜏 ≥ 0)𝑗𝑡] + 𝜃1[1(𝑊𝑖𝑛𝑛𝑒𝑟)𝑝𝑗 × 1(𝜏 ≥ 0)𝑗𝑡] + 𝜃2[𝑇𝑟𝑒𝑛𝑑𝑗𝑡 ×

1(𝑊𝑖𝑛𝑛𝑒𝑟)𝑝𝑗 × 1(𝜏 ≥ 0)𝑗𝑡] + 𝛼𝑝 + 𝜇𝑖𝑡 + 𝜆𝑗 + 휀𝑝𝑖𝑗𝑡 

The analogue: to these in the current county-level context are:  

(3) ln(𝑌𝑘𝑗𝑡) = 𝛿1(𝑊𝑖𝑛𝑛𝑒𝑟)𝑘𝑗 + 𝜅1(𝜏 ≥ 0)𝑗𝑡 + 𝜃1[1(𝑊𝑖𝑛𝑛𝑒𝑟)𝑘𝑗 × 1(𝜏 ≥ 0)𝑗𝑡] +

𝛼𝑘 + 𝜇𝑡 + 𝜆𝑗 + 휀𝑘𝑗𝑡 

(4) ln(𝑌𝑘𝑗𝑡) = 𝛿1(𝑊𝑖𝑛𝑛𝑒𝑟)𝑘𝑗 + 𝜓𝑇𝑟𝑒𝑛𝑑𝑗𝑡 + Ω[𝑇𝑟𝑒𝑛𝑑𝑗𝑡 × 1(𝑊𝑖𝑛𝑛𝑒𝑟)𝑘𝑗] +

𝜅1(𝜏 ≥ 0)𝑗𝑡 + 𝛾[𝑇𝑟𝑒𝑛𝑑𝑗𝑡 × 1(𝜏 ≥ 0)𝑗𝑡] + 𝜃1[1(𝑊𝑖𝑛𝑛𝑒𝑟)5𝑗 × 1(𝜏 ≥ 0)𝑗𝑡] +

𝜃2[𝑇𝑟𝑒𝑛𝑑𝑗𝑡 × 1(𝑊𝑖𝑛𝑛𝑒𝑟)5𝑗 × 1(𝜏 ≥ 0)𝑗𝑡] + 𝛼𝑘 + 𝜇𝑡 + 𝜆𝑗 + 휀𝑘𝑗𝑡, 

where the plant fixed effects have been replaced by county fixed effects and the outcome is total 
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employment. The inclusion of counties that appear multiple times with either the same or 

different winner status is required for the county, case, and the winner status dummy variables 

not to be perfectly collinear. For cases in which the winners and losers only appear once in the 

sample, the case fixed effects cannot be separated from the county fixed effects. Similar issues 

arise with the other parameters. This does not necessarily mean that the equations cannot be 

estimated, but it does just the interpretation of the results in light of the variation that is 

identifying the parameters. 

Table A3 below contains the results from estimating Equation (3) with the full sample, a 

sample restricted to only those counties which don’t appear as both a winner and loser for 

different cases, and a sample restricted to only those counties which appear only once as a 

winner or a loser. There are two sets of estimates for each sample that correspond to two 

different methods for estimating equation (3) in practice. The first (Columns 1, 3, and 5) is the 

method employed in GHM and this paper, which is to estimate 

(5) ln(𝑌𝑘𝑗𝑡) = 𝜗1[1(𝑊𝑖𝑛𝑛𝑒𝑟)𝑘𝑗 × 1(𝜏 < 0)𝑗𝑡] + 𝜗2[1(𝑊𝑖𝑛𝑛𝑒𝑟)𝑘𝑗 × 1(𝜏 ≥ 0)𝑗𝑡] +

𝜋1[1(𝐿𝑜𝑠𝑒𝑟)𝑘𝑗 × 1(𝜏 < 0)𝑗𝑡] + 𝜋2[1(𝐿𝑜𝑠𝑒𝑟)𝑘𝑗 × 1(𝜏 ≥ 0)𝑗𝑡] + 𝛼𝑘 + 𝜇𝑡 + 𝜆𝑗 +

휀𝑘𝑗𝑡, and calculate 𝜃1as  

(6) 𝜃1 = [𝜗2 − 𝜗1] − [𝜋2 − 𝜋1] 

The second method is to estimate Equation (3) as written. The two should be equivalent; 

however, the different number of indicator parameters means that the solution to the “dummy 

variable trap” is different for the two implementation methods and the identifying variation 

differs enough to result in different estimates. The underlying cause can be seen in the difference 

in the number of omitted case fixed effects across specifications. 

Comparing the results in Panels A and B, the same number of cases are represented in both 

estimates but the number of omitted case fixed effects is much higher in Panel B once the 

counties that no longer appear as both a winner and loser are included in the sample. Because the 

case fixed effects can only be separately identified from the county fixed effects and DD  

indicators for counties that either appear more than once in the data as either a winner, loser, or 

both, removing the counties that appear as both a winner and loser changes the number of within 
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case comparisons and within county variation identifying the estimates. The point is made more 

obvious by comparing Panels A and B to Panel C in which the sample is restricted only counties 

that appear once as a winner or loser. All case fixed effects are dropped in Panel C as well as the 

[1(𝑊𝑖𝑛𝑛𝑒𝑟)𝑘𝑗 × 1(𝜏 ≥ 0)𝑗𝑡] and [1(𝐿𝑜𝑠𝑒𝑟)𝑘𝑗 × 1(𝜏 ≥ 0)𝑗𝑡] parameter estimates. The DD 

estimates are identified solely from the pooled time variation. 

Table A3: Change in winner county employment 

 A. Full Sample B. Excluding Counties with 

Both Winner and Loser 

Status 

C. Restricted to 

Counties Appearing 

Once as a Winner or 

Loser 

 (1) (2) (3) (4) (5) (6) 

𝜃1 0.0455* 0.0370 0.0492* 0.0420 0.0397 0.0327 

 (0.0266) (0.0229) (0.0283) (0.0255) (0.0306) (0.0266) 

𝛿  0.0179  0.0470 omitted omitted 

  (0.0394)  (0.0339)   

𝜗1 0.0202  0.0831***  -0.0199  

 (0.0589)  (0.0289)  (0.0217)  

𝜗2 -0.00102  0.111***  omitted  

 (0.0613)  (0.0193)    

𝜋1 0.0202  0.0389***  0.0198  

 (0.0589)  (0.0148)  (0.0172)  

𝜋2 -0.00102  0.0175  omitted  

 (0.0613)  (0.0199)    

Omitted 𝜇𝑡 3 3 3 3 3 3 

Omitted 𝜆𝑗 36 35 44 43 56 56 

Total 

Cases 

64 64 64 64 56 56 
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To demonstrate the issues associated with inclusion of the relocations (i.e., inclusion of 

cases where the loser was the county where the firm was closing a plant), I repeat the exercise 

above but drop all relocation cases. 

Table A4: Sensitivity to inclusion of relocation cases 

 A. Full Sample 

without 

Relocations 

B. Excluding Counties with 

Both Winner and Loser 

Status 

C. Restricted to 

Counties Appearing 

Once as a Winner or 

Loser 

 (1) (2) (3) (4) (5) (6) 

𝜃1 0.0251 0.0229 0.0265 0.0250 0.0140 0.0126 

 (0.0326) (0.0288) (0.0341) (0.0310) (0.0363) (0.0316) 

𝛿  0.0737***  -0.0746* omitted omitted 

  (0.0197)  (0.0392)   

𝜗1 0.0511**  0.0416**  -0.00990  

 (0.0203)  (0.0172)  (0.0264)  

𝜗2 0.0704***  0.0371  omitted  

 (0.0254)  (0.0241)    

𝜋1 -0.0220  -0.0334  0.00411  

 (0.0301)  (0.0331)  (0.0211)  

𝜋2 -0.0278  -0.0114  omitted  

 (0.0309)  (0.0223)    
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B. Equation (1) event study tests of identifying assumptions 

 

Figure B1: Spillover event study GHM 

winners and losers 

 

Figure B2: Spillover event study Case set 1 

and propensity score losers 

 

Figure B3: Spillover event study Case set 2 

and propensity score losers 

 

 

Figure B4: Spillover event study Case set 3 

and propensity score losers 

 
 

Figure B5: Spillover event study Case set 4 

and propensity score losers 
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Table B1: Case Set 1 Incumbent Plant Productivity Relative to year before an MDP Opening 

 Panel A  Panel B 

 
In Winner 

Counties 

(1) 

In GHM 

Loser 

Counties 

(2) 

Difference 

Col. 1 – 

Col. 2 

(3)  

In Winner 

Counties 

(1) 

In Pscore 

Loser 

Counties 

(2) 

Difference 

Col. 1 – 

Col. 2 

(3) 

𝜏 = −7 1.652e-04 -0.02247 0.02263  0.05465** 0.007813 0.04684* 
 (0.03650) (0.03387) (0.02336)  (0.02477) (0.02846) (0.02746) 

𝜏 = −6 -0.007045 -0.02064 0.01360  0.05903*** -0.01489 0.07392*** 
 (0.03147) (0.03107) (0.02682)  (0.02120) (0.02321) (0.02633) 

𝜏 = −5 -0.02105 -0.02890 0.007854  0.05124** -0.004284 0.05553*** 
 (0.02982) (0.02720) (0.02823)  (0.02123) (0.01935) (0.02090) 

𝜏 = −4 -0.03112 -0.01485 -0.01626  0.03693* 0.006134 0.03079 
 (0.02536) (0.02492) (0.02507)  (0.01885) (0.01671) (0.01914) 

𝜏 = −3 -0.04749* -0.03055 -0.01694  0.02242 0.01915 0.003274 
 (0.02771) (0.01920) (0.02629)  (0.01706) (0.01307) (0.01971) 

𝜏 = −2 -0.04800 -0.01447 -0.03353  -0.02067 0.002289 -0.02296 
 (0.03242) (0.01141) (0.03196)  (0.02664) (0.01565) (0.02941) 

𝜏 = −1 - - -  - - - 

𝜏 = 0 -0.01066 -0.006441 -0.004218  0.006673 0.01176 -0.005082 
 (0.01833) (0.01983)   (0.02016) (0.01212) (0.02203) 

𝜏 = 1 0.005134 0.001288 0.003845  0.02292 -0.01731 0.04023 
 (0.02184) (0.01645) (0.02352)  (0.02425) (0.01765) (0.02677) 

𝜏 = 2 0.009550 -0.02272 0.03227  0.04285** -0.01012 0.05297** 
 (0.03011) (0.02356) (0.03719)  (0.02182) (0.01970) (0.02640) 

𝜏 = 3 0.01878 -0.002844 0.02162  0.05755** -0.01251 0.07006** 
 (0.03344) (0.02294) (0.02879)  (0.02326) (0.02598) (0.03109) 

𝜏 = 4 0.01457 -0.01642 0.03099  0.03573 -0.02228 0.05801 
 (0.03360) (0.02710) (0.03010)  (0.03015) (0.02990) (0.03615) 

𝜏 = 5 -0.01726 -8.531e-04 -0.01640  0.003816 0.002810 0.001005 
 (0.04067) (0.03674) (0.03751)  (0.03661) (0.03513) (0.03736) 

Obs. 27,000 

0.985 

 17,500 

0.987 R2  
Notes: The table presents the results of estimating the production function with an interaction terms for every winner 

status-relative year combination. The coefficients in the winner (loser) columns are then calculated as the difference 

between the winner (loser) – relative year coefficient and the winner (loser) coefficient in year 𝜏 = −1. Panel A uses 

the sample of incumbent plants in GHM winner and loser counties to the extent that this sample was replicable using 

the restricted-access replication code provided by the Census and the information in Greenstone and Moretti (2003). 

Panel B uses the GHM sample of winning counties and incumbent plants in the nearest two propensity score 

counties within 100-250 miles of the winning county for each case. 
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Table B2: Case Sets 2-4 Incumbent Plant Productivity Relative to year before an MDP Opening 

 Panel A: Case set 2  Panel B: Case set 3  Panel C: Case set 4 

 
In Winner 

Counties 

(1) 

In GHM 

Loser 

Counties 

(2) 

Difference 

Col. 1 – 

Col. 2 

(3) 

 
In Winner 

Counties 

(1) 

In GHM 

Loser 

Counties 

(2) 

Difference 

Col. 1 – 

Col. 2 

(3) 

 
In Winner 

Counties 

(1) 

In GHM 

Loser 

Counties 

(2) 

Difference 

Col. 1 – 

Col. 2 

(3) 

𝜏 = −7 0.04755** 0.03344 3.129e-04  0.006518 -0.006391 0.01291**  3.149e-04 -0.006020 0.006335 
 (0.02073) (0.02276) (0.02186)  (0.004419) (0.004080) (0.005647)  (0.007383) (0.008175) (0.009781) 

𝜏 = −6 0.03129** 0.009850 0.03770*  0.003962 -0.003359 0.007320  0.001490 -0.009602 0.01109 
 (0.01545) (0.01726) (0.02168)  (0.004219) (0.003929) (0.005473)  (0.007405) (0.008159) (0.01011) 

𝜏 = −5 0.02680** 0.005736 0.02555  0.003259 -0.002685 0.005944  0.005938 -0.004839 0.01078 
 (0.01182) (0.01426) (0.01754)  (0.004068) (0.003823) (0.005409)  (0.007903) (0.009820) (0.01187) 

𝜏 = −4 0.02466** -0.002197 0.02900  -0.002228 -9.451e-04 -0.001283  -6.908e-04 0.002977 -0.003667 
 (0.01137) (0.01535) (0.01831)  (0.004063) (0.003755) (0.005514)  (0.006183) (0.008774) (0.01012) 

𝜏 = −3 -0.001621 -0.004063 0.02872**  0.003782 -0.007999** 0.01178**  -0.007537 0.002606 -0.01014 
 (0.01415) (0.01191) (0.01351)  (0.003953) (0.003712) (0.005399)  (0.006821) (0.009040) (0.01116) 

𝜏 = −2 0.04755** -0.001407 -2.134e-04  0.002479 -0.003497 0.005976  0.001558 -0.004078 0.005636 
 (0.02073) (0.01299) (0.01868)  (0.004081) (0.003775) (0.005571)  (0.005278) (0.006141) (0.007682) 

𝜏 = −1 - - -  - - -  - - - 

𝜏 = 0 0.01085 0.008565 0.002286  -1.238e-04 -0.002961 0.002837  -0.006289 0.001089 -0.007379 
 (0.01054) (0.01097) (0.01418)  (0.004112) (0.003840) (0.005640)  (0.005985) (0.006363) (0.008308) 

𝜏 = 1 0.001929 -0.007688 0.009617  -0.007385* -0.007664** 2.785e-04  0.006882 -0.004988 0.01187 
 (0.01156) (0.01731) (0.01786)  (0.004058) (0.003838) (0.005584)  (0.005544) (0.007248) (0.009516) 

𝜏 = 2 0.01253 0.007637 0.004891  0.002934 -0.004395 0.007328  2.249e-04 -0.01022 0.01045 
 (0.01438) (0.01501) (0.01733)  (0.004293) (0.004047) (0.005922)  (0.008545) (0.008265) (0.01257) 

𝜏 = 3 0.02030 -0.008174 0.02848  9.373e-05 -0.008395* 0.008489  -0.001211 -2.270e-04 -9.837e-04 
 (0.01960) (0.01617) (0.02325)  (0.004546) (0.004344) (0.006202)  (0.01034) (0.009073) (0.01451) 

𝜏 = 4 0.02676 -0.01207 0.03883  0.006680 -0.007428 0.01411**  -0.005362 -0.01420 0.008835 
 (0.01994) (0.01748) (0.02604)  (0.004832) (0.004564) (0.006461)  (0.008397) (0.009138) (0.01102) 

𝜏 = 5 0.02810 0.01899 0.009116  -0.003630 -0.01662*** 0.01299*  -0.008107 0.002079 -0.01019 
 (0.02253) (0.02108) (0.02243)  (0.005155) (0.004803) (0.006841)  (0.008785) (0.01258) (0.01365) 
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Obs. 30,500  93,500  123,000 

R2 0.983  0.981  0.978 

NOTES The table presents the results of estimating the production function with an interaction terms for every winner status-relative year combination. The 

coefficients in the winner (loser) columns are then calculated as the difference between the winner (loser) – relative year coefficient and the winner (loser) 

coefficient in year 𝜏 = −1. Each panel represents results for estimation using the respective case set samples of continuously-appearing incumbent plants in the 

winning counties and their nearest two propensity score neighbors. Standard errors clustered at the county level are in parentheses. *** p<0.01, ** p<0.05, * 

p<0.1 
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C. Equation (7) event study tests of identifying assumptions using nearest MDP-industry location quotient neighbor 

counterfactuals 

 

 

Table C1: Nearest Location Quotient Incumbent Plant Summary Statistics 

 Case Set 1 Case set 2 Case set 3 Case set 4 

 Winners LQ Losers  Winners LQ Losers  Winners LQ Losers  Winners LQ Losers 

Plants            

(log) Output 10.6 10.6  10.48 10.41  10.54 10.55  10.51 10.52 

 1.133 0.9826  1.09 1.026  1.096 1.079  1.088 1.07 

(log) Labor 6.417 6.455  6.411 6.412  6.339 6.342  6.261 6.278 

 1.011 1.049  0.9633 0.891  0.9868 0.9858  1.012 0.9919 

Counties            

Incumbent Plants 10.76 11.79  14.76 5.417  14.42 6.662  19.23 9.777 

 12.31 13.62  40.16 6.857  32.05 10.22  43.38 32.46 

Counties 40 80  70 100  300 700  300 500 

Total Counties 100 200 650 700 
Notes: The table presents sample statistics for the samples of continuously appearing incumbent plants in the treated (“winner”) and control (“loser”) counties for 

each set of MDP cases. Case set 1 is the sample MDPs in Greenstone, Hornbeck, and Moretti (2010) (GHM). Case set 2 includes the GHM MDPs that appear in 

Site Selection magazine and none of the GHM MDPs that do not appear in the magazine as well as a subset of any other MDP appearing in Site Selection 

magazine during the GHM sample period and a subset of incentivized plant locations reported in the Good Jobs First Subsidy Tracker Database from 1988-1993. 

Case set 3 includes the case set 2 MDPs plus a subset of large, incentivized plants appearing in the Good Jobs First Subsidy Tracker from 1994-1997. Case set 4 

is a random sample of 500 new establishment births from the set of new establishment births in the micro data that had the employment above the 95th percentile 

of employment in new births from 1982-1997. Counties represents the number of unique counties from which the samples are drawn. The number of counties is 

weighted by the inverse of their number per case for cases to receive equal weight. Plants are weighted by the product of the inverse of their number per county 

and the inverse of the number of counties per case. The number of counties and all statistics are rounded according to the Census rounding rules for disclosure. 
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Figure C1: Spillover event study Case set 1 and location quotient losers 

 

 

Figure C2: Spillover event study Case set 2 and location quotient losers 

  

 

Figure C3: Spillover event study Case set 3 and location quotient losers 
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Figure C4: Spillover event study Case set 4 and propensity score losers 

 

 

D. Multiple Equilibria Analysis 

D.1 Methodology 

We test the multiple equilibria hypothesis using the methodologies developed in Davis and 

Weinstein (2002; 2008) and Bosker et al. (2007). The methodology compares county-

manufacturing and county-manufacturing-industry shares of national manufacturing and 

manufacturing-industry from before the MDP location with those 20 years after. We define 

county-manufacturing (log) share at time 𝜏 in county c receiving MDP shock j as its location 

quotient 𝑠𝑐(𝑗)𝜏 ≡ ln(𝑆𝑐(𝑗)𝜏) = ln (
𝑚𝑎𝑛𝑢𝑓𝑎𝑐𝑡𝑢𝑟𝑖𝑛𝑔 𝑜𝑢𝑡𝑝𝑢𝑡𝑐(𝑗)𝜏

𝑚𝑎𝑛𝑢𝑓𝑎𝑐𝑡𝑢𝑟𝑖𝑛𝑔 𝑜𝑢𝑡𝑝𝑢𝑡𝑈𝑆𝜏
).4 Assuming a unique, stable 

equilibrium, county manufacturing shares at time 𝜏 can be modeled as 𝑠𝑐(𝑗)𝜏 = Π𝑐(𝑗) + 휀𝑐(𝑗)𝜏, 

where Πc(j) is the initial equilibrium size in county c and 휀𝑐(𝑗)𝜏 is a location-specific shock to 

manufacturing share. Persistence of shocks takes the form 휀𝑐(𝑗),𝜏+1 = 𝜌휀𝑐(𝑗),𝜏 + 𝜈𝑐(𝑗),𝜏+1, where 

𝜌 ∈ [0,1) is the persistence parameter.  

Let 𝑣𝑐(𝑗),5 be the MDP shock to county output during the first five years after opening and 

𝑣𝑐(𝑗),20 be the typical idiosyncratic location-specific shock to manufacturing share around the 

new post-MDP equilibrium 𝑠𝑐(𝑗),20. As shown in Davis and Weinstein (2002), our equation for 

the effect of the MDP shock to winning county c(j)’s share of manufacturing output becomes:  

                                                           
4 We measure the location’s manufacturing output share from the data and use all plants reporting. 
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(7) 𝑠𝑐(𝑗),20 − 𝑠𝑐(𝑗),5 = (𝜌 − 1)𝜈𝑐(𝑗),5 + [𝜈𝑐(𝑗),20 + 𝜌(1 − 𝜌)휀𝑐(𝑗),−5],5  

where the term in brackets is the error term and uncorrelated with MDP shock. We use 

Census micro data on the large firm locations and therefore know the size of the MDP shock. We 

define the MDP shock as 𝑀𝐷𝑃𝑠ℎ𝑜𝑐𝑘 = max(𝑀𝐷𝑃 𝑜𝑢𝑡𝑝𝑢𝑡𝑐(𝑗)𝜏) , 𝜏 ∈ (0,5), or the maximum 

amount of output reported by an MDP owned firm in the winning county from the announcement 

date through the five full years of operation by which time we expect the MDP to be at its stable 

size. We then define the shock to winning county output shares as 𝜈𝑐(𝑗),5 ≡ 𝑀𝐷𝑃𝑠ℎ𝑜𝑐𝑘/

𝑜𝑢𝑡𝑝𝑢𝑡𝑐(𝑗),−1, which we can relate to the growth rate in winning county manufacturing shares 

during this period by noting 𝑠𝑐(𝑗),5 − 𝑠𝑐(𝑗),−1 ≈

(

𝑚𝑓𝑔 𝑜𝑢𝑡𝑝𝑢𝑡𝑐(𝑗),−1+𝑀𝐷𝑃 𝑜𝑢𝑡𝑝𝑢𝑡𝑐(𝑗),5

𝑚𝑓𝑔 𝑜𝑢𝑡𝑝𝑢𝑡𝑈𝑆,−1
 − 

𝑚𝑓𝑔 𝑜𝑢𝑡𝑝𝑢𝑡𝑐(𝑗),−1

𝑚𝑓𝑔 𝑜𝑢𝑡𝑝𝑢𝑡𝑈𝑆,−1
𝑚𝑓𝑔 𝑜𝑢𝑡𝑝𝑢𝑡𝑐(𝑗),−1

𝑚𝑓𝑔 𝑜𝑢𝑡𝑝𝑢𝑡𝑈𝑆,−1

) =
𝑀𝐷𝑃 𝑜𝑢𝑡𝑝𝑢𝑡𝑐(𝑗),−1

𝑚𝑓𝑔 𝑜𝑢𝑡𝑝𝑢𝑡𝑐(𝑗),−1
. 

The unique equilibrium test rests on the estimation of 𝜌. If 𝜌 = 1, then the shock is permanent 

and shares follow a random walk. If 𝜌 = 0, then the shock dissipates fully. 0 ≤ 𝜌 < 1 suggests a 

mean-reverting process and we can reject that manufacturing shares follow a random walk. This 

may or may not be consistent with multiple equilibria.  

It is possible that 𝜌 ≠ 0 because there is some correlation between the future changes in 

county manufacturing shares and past changes that we do not model. Thus, we include pre-MDP 

opening growth in manufacturing share as a control in the estimating equation. It is also possible 

that the MDP shock is correlated with the error term and we cannot obtain a consistent estimate 

of 𝜌 by directly estimating (7). Instead, we instrument for the MDP shock using average national 

establishment output for firms in the MDP’s 4-digit SIC industry and average national new 

entrant output in the MDP’s 3-digit industry in time 𝜏 = −1 expressed as a share of initial 

winning county manufacturing output. We use instruments from 𝜏 = −1 to avoid any concerns 

                                                           
5 As suggested in Bosker et al. (2007), we use growth rates constructed as 

𝑥𝑡−𝑥𝑡−𝑖

𝑥𝑡−𝑖
, rather than ln(𝑥𝑡) − ln (𝑥𝑡−𝑖) 

because the latter is only a valid measure of growth for small changes. 
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that MDP’s output decision or announcement influences the output decisions of other firms.6 Our 

estimating equation therefore becomes: 

(8) 𝑠𝑐(𝑗),20 − 𝑠𝑐(𝑗),5 = 𝛼�̂�𝑐(𝑗),5 + 𝛽0 + 휁𝑃𝑟𝑒𝑀𝐷𝑃𝑐(𝑗) + 𝑒𝑟𝑟𝑜𝑟𝑐(𝑗)
7,  

where 𝛼 = 𝜌 − 1 and 𝑃𝑟𝑒𝑀𝐷𝑃𝑐(𝑗)is the pre-MDP opening growth in county manufacturing 

share. Under the null of hypothesis of a unique equilibrium, the coefficient on the instrumented 

MDP shock is minus one.  

The coefficient on the MDP shock from equation (8) gives evidence about whether the data 

support rejection of the null of a unique equilibrium, it does not provide a direct test whether the 

data support a unique equilibrium over multiple equilibria. Under the assumption of multiple 

equilibria, a large enough positive (negative) shock to manufacturing output can push the 

county’s share past some threshold beyond which the county has a higher (lower) equilibrium 

share. In the case of three equilibria, for example, a county’s share of manufacturing output at 

the new post-MDP equilibrium may be written: 

(9)  𝑠𝑐(𝑗),20 = {

Π𝑐(𝑗) + Δ1 + 휀𝑐(𝑗),20
1      𝑖𝑓 𝜈𝑐(𝑗),5 < 𝑏1

Π𝑐(𝑗) + 휀𝑐(𝑗)20
2      𝑖𝑓 𝑏1 < 𝜈𝑐(𝑗),5 < 𝑏2

Π𝑐(𝑗) + Δ3 + 휀𝑐(𝑗)20
3      𝑖𝑓 𝜈𝑐(𝑗),5 > 𝑏2

 

where Δ1and Δ3 are the respective differences in log-shares from the initial equilibrium and 

the new equilibrium, 𝑏1and 𝑏2are the respective thresholds, and the equilibrium specific error 

terms are as follows: 

(10) 

휀𝑐(𝑗),20
1 = 𝜌(휀𝑐(𝑗),5 − Δ1) + 𝜈𝑐(𝑗)20     𝑖𝑓 𝜈𝑐(𝑗),5 < 𝑏1

휀𝑐(𝑗),20
2 = 𝜌휀𝑐(𝑗),5 + 𝜈𝑐(𝑗),20     𝑖𝑓 𝑏1 < 𝜈𝑐(𝑗),5 < 𝑏2

휀𝑐(𝑗),20
3 = 𝜌(휀𝑐(𝑗),5 − Δ3) + 𝜈𝑐(𝑗),20     𝑖𝑓 𝜈𝑐(𝑗),5 > 𝑏2

 

                                                           
6 In the spirit of Bosker et al. (2007), we also consider a geographical extension and used the distance-weighted 

change in surrounding county manufacturing shares as an instrument; however, conditional on our other instruments 

this had little power in the first stage and we therefore report estimates using the MDP industry output instruments.  
7 We include a constant to allow for the possibility that the error is not mean zero. Shares do not add to one.  
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As shown in Davis and Weinstein (2008), taken together, these give: 

(11) 𝑠𝑐(𝑗),20 − 𝑠𝑐(𝑗),5 =

{

Δ1(1 − 𝜌) + (𝜌 − 1)𝜈𝑐(𝑗),5 + [𝑣𝑐(𝑗),20 + (1 − 𝜌)휀𝑐(𝑗),−5]     𝑖𝑓 𝜈𝑐(𝑗),5 < 𝑏1

(𝜌 − 1)𝜈𝑐(𝑗),5 + [𝑣𝑐(𝑗),20 + (1 − 𝜌)휀𝑐(𝑗),−5]     𝑖𝑓 𝑏1 < 𝜈𝑐(𝑗),5 < 𝑏2

Δ3(1 − 𝜌) + (𝜌 − 1)𝜈𝑐(𝑗),5 + [𝑣𝑐(𝑗),20 + (1 − 𝜌)휀𝑐(𝑗),−5]     𝑖𝑓 𝜈𝑐(𝑗),5 > 𝑏2

 

The equations in (11) have different constants, but are otherwise the same. The term in 

brackets is the error term and uncorrelated with the MDP shock. If shocks are not very persistent, 

then 𝜌 = 0. The expression in (11) can be rewritten as:  

(12)  𝑠𝑐(𝑗),20 − 𝑠𝑐(𝑗),5 = (1 − 𝜌)∆1𝐼1(𝑏1, 𝜈𝑐(𝑗),5) + (1 − 𝜌)∆3𝐼3(𝑏2, 𝜈𝑐(𝑗),5) +

(𝜌 − 1)(𝑠𝑐(𝑗),5 − 𝑠𝑐(𝑗),−1) + [𝑣𝑐(𝑗),20 + (1 − 𝜌)휀𝑐(𝑗),−5], 

where 𝐼1(𝑏1, 𝜈𝑐(𝑗),5) is an indicator variable equal to one if 𝜈𝑐(𝑗),5 < 𝑏1 and 𝐼3(𝑏2, 𝜈𝑐(𝑗),5) is an 

indicator variable equal to one if 𝜈𝑐(𝑗),5 > 𝑏2.  As in the previous literature, we assume that the 

period is long enough for the shock to have dissipated and thus 𝜌 = 0 and estimate: 

(13) 𝑠𝑐(𝑗),20 − 𝑠𝑐(𝑗),−1 = (1 − 𝜌)∆1𝐼1(𝑏1, 𝜈𝑐(𝑗),5̂) + (1 − 𝜌)∆3𝐼3(𝑏2, 𝜈𝑐(𝑗),5̂) +

휁𝑃𝑟𝑒𝑀𝐷𝑃𝑐(𝑗) + 𝑣𝑐(𝑗),20,  

where we use instrumented MDP shocks and include the PreMDP growth rate in county 

manufacturing shares to address any concerns over potential correlation between the error term 

and the shock.  

Equation (13) assumes we know the number of equilibria and the value of the thresholds. In 

practice, we do not and use the maximum likelihood grid search method and selection criteria 

described in Davis and Weinstein (2008) and Bosker et al (2007). We consider one, two, three, 

and four equilibria specifications and use the value of the likelihood functions to determine 

which bests describes the data. 

The multiple equilibria estimating equations require a comparison of winning county shares 

of national manufacturing output over time. We construct these shares from the restricted-access 
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Census of Manufacturers (CM). We remove any plants owned by the MDP firms from the micro 

data and then aggregate the microdata by county-year and county-industry-year. We require 

years that are not CM years and therefore linearly interpolate between CM years for each county 

and the nation as a whole. We do not construct shares from ASM data for these years because the 

ASM sampling scheme could introduce errant variation in shares. 

D.2 Results 

Tables D1-D4 present the results of our test of the multiple equilibria hypothesis in county 

manufacturing shares using winning counties from case sets 1, 2, 3, and 4, respectively. Tables 

D5-D6 report the analogous results for multiple equilibria in county-MDP industry shares. 

Column 1 in each table present the results of instrumental variable estimation of equation (7), 

which tests the null of a unique equilibrium by testing with the coefficient on the MDP shock is 

minus unity. Columns 2-5 present the results of the one, two, three, and four equilibria 

specifications of equation (13) with the threshold values that maximized the Schwarz criterion in 

the maximum likelihood grid search. We choose the number of equilibria best supported by the 

data by choosing the specification that maximizes the Schwarz criterion and requiring, if it is a 

multiple equilibria specification, that the intercepts and thresholds take sensible values. In 

particular, we require that a larger positive shock be associated with larger, new equilibrium 

share and that the thresholds lie between equilibrium shares. Following Davis and Weinstein 

(2008), we therefore impose the following intercept ordering criterion: 𝛿1 + 𝛿2 < 𝑏1 < 𝛿2 <

𝑏2 < 𝛿2 + 𝛿3 < 𝑏3 < 𝛿2 + 𝛿4. 

Table D1 presents the manufacturing share results for case set 1 winning counties, the 

counties receiving the GHM MDP shocks. Recall that this was the only case set for which we 

estimated positive spillovers and therefore the most likely candidate for shocks sufficient to push 

the winning counties into a new equilibrium. We can reject that the coefficient on the MDP 

shock is minus unity in the IV specification reported in Table 10 Column 1 – meaning that we 

can reject the null of a unique equilibrium. The specifications in Columns 2-5 put a unique 

equilibrium within the same framework as multiple equilibria. Comparing the Schwarz criterion 

across specifications, the data most strongly support a unique equilibrium despite the IV 
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rejection of the unique equilibrium null. Among the multiple equilibria specifications, the two 

equilibria specification is preferred and also passes the intercept ordering criterion. 

Table D2 presents the estimates for counties winning case set 2 MDPs, which represented the 

largest share of winning county output, on average, in a samples of MDP cases. Here, we can 

reject the null hypothesis that the coefficient on the MDP shock is minus unity in the IV 

specification (Column 1). Again, this suggests that we can reject the null hypothesis of one 

unique equilibrium. However, the threshold regressions suggest that the unique equilibrium 

specification better describes the data than any of the multiple equilibria specifications. Among 

the multiple equilibria specifications, the three equilibria specification is slightly preferred to the 

two equilibria specification.  

Tables D3 and D4 present the results for case sets 3 and 4, respectively. In both cases, the IV 

specification indicates that we can reject the null of a unique equilibria, but the Schwarz criterion 

prefers the unique equilibria specification. The rejection of the coefficient on the MDP shock as 

equal to minus unity in the IV specifications suggests that 𝜌 ≠ 0, which is the assumption 

imposed by our multiple equilibria tests. However, the estimated coefficients are positive 

suggesting that 𝜌 > 0. As discussed in Davis and Weinstein (2008), 𝜌 > 0 would bias our 

multiple equilibria tests in favor of finding multiple equilibria. The fact that the data are still best 

described by the unique equilibrium specification provides even stronger evidence in support of 

a unique equilibrium 
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Table D1: Case set 1 manufacturing share multiple equilibria test 

 

𝑠𝑐(𝑗),20

− 𝑠𝑐(𝑗),5 

 

𝑠𝑐(𝑗),20 − 𝑠𝑐(𝑗),−1 

 

IV Estimate  

(1) 

 1 

Equilibrium 

(2) 

2 

Equilibria 

(3) 

3 

Equilibria 

(4) 

4 

Equilibria 

(5) 

PreMDP Growth Rate 0.06642  1.325*** 1.572*** 1.29* 2.824*** 

 (0.3079)  (0.4708) (0.5147) (0.5035) (0.7544) 

MDP Shock -0.05057      

 (0.05477)      

δ1    -1.771*** 1.064** -4.010** 

    (0.5575) (0.5036) (1.628) 

δ3     1.952*** -1.323*** 

     (0.5328) (0.4536) 

δ4      1.987*** 

      (0.4928) 

Constant 0.2208*  0.4331** 2.004*** 0.07808 1.224*** 

 (0.1215)  (0.1836) (0.5218) (0.2150) (0.4043) 

Thresholds       

b1    0.3323 -0.7615 -4.253 

b2     0.4855 -0.3208 

b3      0.4855 

Intercept ordering 

criterion 
N/A 

 
N/A Pass Fail Fail 

Schwarz Criterion N/A  -46.57 -52.18 -53.25 -53.56 

Counties 30  30 30 30 30 

R-squared   0.215 0.397 0.483 0.577 
NOTES: The table presents the results of our tests for manufacturing share multiple equilibria associated with the 

case set 1 MDPs. Column 1 is the IV estimation of equation (12), which tests the null of a unique equilibrium by 

testing with the coefficient on the MDP shock is minus unity. Columns 2-5 present the results of the one, two, three, 

and four equilibria specifications of equation (17) with the threshold values that maximized the Schwarz criterion. 

The intercept ordering criterion requires: 𝛿1 + 𝛿2 < 𝑏1 < 𝛿2 < 𝑏2 < 𝛿2 + 𝛿3 < 𝑏3 < 𝛿2 + 𝛿4, where the constant is 

𝛿2 above. Standard errors are in parentheses. *** p<0.01, ** p<0.05, * p<0.1 
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Table D2: Case set 2 manufacturing share multiple equilibria test 

 

𝑠𝑐(𝑗),20

− 𝑠𝑐(𝑗),5 

 

𝑠𝑐(𝑗),20 − 𝑠𝑐(𝑗),−1 

 

IV Estimate  

(1) 

 1 

Equilibrium 

(2) 

2 

Equilibria 

(3) 

3 

Equilibria 

(4) 

4 

Equilibria 

(5) 

PreMDP Growth Rate  -3.193*  0.6045 1.515 1.462 2.185* 

 (1.723)  (0.8233) (1.200) (1.137) (1.291) 

MDP Shock 0.09841*      

 (0.05061)      

δ1    -5.165*** -0.8436 2.360 

    (1.267) (1.26) (2.518) 

δ3     6.488*** 2.830 

     (1.742) (2.496) 

δ4      6.931*** 

      (1.428) 

Constant 0.1606  0.9163*** 5.351*** 0.8958 -2.413 

 (0.1764)  (0.3199) (1.169) (1.174) (2.460) 

Thresholds       

b1    1.076 0.6336 0.04455 

b2     1.739 0.0716 

b3      1.739 

Intercept ordering 

criterion 
N/A  N/A Pass Pass Fail 

Schwarz Criterion N/A  -182.8 -214.4 -214 -217.8 

Counties 70  70 70 70 70 

R-squared   0.007 0.199 0.295 0.304 
NOTES: The table presents the results of our tests for manufacturing share multiple equilibria for case set 2 MDPs. 

Column 1 is the IV estimation of equation (12), which tests the null of a unique equilibrium by testing with the 

coefficient on the MDP shock is minus unity. Columns 2-5 present the results of the one, two, three, and four 

equilibria specifications of equation (17) with the threshold values that maximized the Schwarz criterion. The 

intercept ordering criterion requires: 𝛿1 + 𝛿2 < 𝑏1 < 𝛿2 < 𝑏2 < 𝛿2 + 𝛿3 < 𝑏3 < 𝛿2 + 𝛿4, where the constant is 𝛿2 

above. Standard errors are in parentheses. *** p<0.01, ** p<0.05, * p<0.1. 

 

 

 

. 
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Table D3: Case set 3 manufacturing share multiple equilibria test 

 

𝑠𝑐(𝑗),20

− 𝑠𝑐(𝑗),5 

 

𝑠𝑐(𝑗),20 − 𝑠𝑐(𝑗),−1 

 

IV Estimate  

(1) 

 1 

Equilibrium 

(2) 

2 

Equilibria 

(3) 

3 

Equilibria 

(4) 

4 

Equilibria 

(5) 

PreMDP Growth Rate  -0.08337  -0.05676 -0.2042 -0.2420 -0.2443 

 (0.06114)  (0.1150) (0.1638) (0.1570) (0.1570) 

MDP Shock 0.06165**      

 (0.02390)      

δ1    -3.053*** -0.7947** -0.2749 

    (0.3346) (0.3853) (0.2548) 

δ3     3.553*** 0.6676* 

     (0.5121) (0.4021) 

δ4      3.549*** 

      (0.5088) 

Constant -0.02123  0.4791*** 3.212*** 0.9009** 0.2414 

 (0.04595)  (0.08505) (0.3107) (0.3643) (0.1815) 

Threshholds       

b1    0.3316 0.23 0.0244 

b2     0.5663 0.23 

b3      0.5663 

Intercept ordering 

criterion 
N/A 

 
N/A Pass Fail Fail 

Schwarz Criterion N/A  -851 -1006 -993.4 -998.8 

Counties 450  450 450 450 450 

R-squared   0.001 0.164 0.234 0.237 
NOTES: The table presents the results of our tests for manufacturing share multiple equilibria for case set 3 MDPs. 

Column 1 is the IV estimation of equation (12), which tests the null of a unique equilibrium by testing with the 

coefficient on the MDP shock is minus unity. Columns 2-5 present the results of the one, two, three, and four 

equilibria specifications of equation (17) with the threshold values that maximized the Schwarz criterion. The 

intercept ordering criterion requires: 𝛿1 + 𝛿2 < 𝑏1 < 𝛿2 < 𝑏2 < 𝛿2 + 𝛿3 < 𝑏3 < 𝛿2 + 𝛿4, where the constant is 𝛿2 

above. Standard errors are in parentheses. *** p<0.01, ** p<0.05, * p<0.1. 
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Table D4: Case set 4 manufacturing share multiple equilibria test 

 

𝑠𝑐(𝑗),20

− 𝑠𝑐(𝑗),5 

 

𝑠𝑐(𝑗),20 − 𝑠𝑐(𝑗),−1 

 

IV Estimate  

(1) 

 1 

Equilibrium 

(2) 

2 

Equilibria 

(3) 

3 

Equilibria 

(4) 

4 Equilibria 

(5) 

PreMDP Growth Rate   0.08275  0.3628*** 0.3015*** 0.3025*** 0.3019*** 

 (0.2011)  (0.02336) (0.02776) (0.02774) (0.02766) 

MDP Shock 0.6852      

 (0.4926)      

δ1    -0.3799*** -0.8039*** -0.4935** 

    (0.09322) (0.2157) (0.2211) 

δ3     -0.4937** -0.2173* 

     (0.2217) (0.1202) 

δ4      0.7127*** 

      (0.2210) 

Constant -0.06347  -3.856e-04 0.1892*** 0.6729*** -0.03981 

 (0.04527)  (0.03918) (0.06289) (0.2074) (0.07788) 

Thresholds       

b1    0.0003642 0.0007467 0.00009817 

b2     0.001002 0.0007538 

b3      0.001002 

Intercept ordering 

criterion 
N/A  N/A Pass Fail Fail 

Schwarz Criterion N/A  -484.9 -559 -563.1 -567.5 

Counties 400  400 400 400 400 

R-squared   0.374 0.262 0.269 0.275 
NOTES: The table presents the results of our tests for manufacturing share multiple equilibria for case set 4 MDPs. 

Column 1 is the IV estimation of equation (12), which tests the null of a unique equilibrium by testing with the 

coefficient on the MDP shock is minus unity. Columns 2-5 present the results of the one, two, three, and four 

equilibria specifications of equation (17) with the threshold values that maximized the Schwarz criterion. The 

intercept ordering criterion requires: 𝛿1 + 𝛿2 < 𝑏1 < 𝛿2 < 𝑏2 < 𝛿2 + 𝛿3 < 𝑏3 < 𝛿2 + 𝛿4, where the constant is 𝛿2 

above. Standard errors are in parentheses. *** p<0.01, ** p<0.05, * p<0.1. 

 

Tables D5-D8 report analogous estimates for county MDP-industry shares rather than 

manufacturing shares. The sample of winning counties decreases for these results because it is 

limited to those winning counties that had pre-existing establishments in the MDPs own 3-digit 

SIC code industry. We reject the null of a unique equilibrium under the IV specification for all 4 
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case sets. Yet, the data most strongly support a unique equilibrium when analyzed within the 

same framework as multiple equilibria (Columns 2-5) for case sets 1-3. Interestingly, though, the 

data most strongly support multiple equilibria for case set 4, with the two equilibria specification 

maximizing the Schwarz criterion and passing the intercept ordering criterion.  

Recall from our earlier discussion that case set 4 is the set of randomly drawn largest 

employers in the micro data – not a set of highly incentivized large plants. These large plant 

shocks were, on average, much smaller output and employment shocks than the sets of highly, 

incentivized plants. However, they were much larger payroll shocks, potentially suggesting more 

highly skilled employees and higher labor productivity. Thus, it is possible that it is the size of 

the human capital shock, rather than the size of the output shock, that matters most for pushing a 

location into a new equilibrium share of manufacturing-industry output. The fact that the data 

does not support multiple equilibria for case set 3 shocks, which also have at least some high 

human capital MDPs, casts some doubt on this. Instead, it may be that multiple equilibria are 

supported precisely because the case set 4 shocks are not highly-incentivized and thus forego 

some of the general equilibrium congestion costs and crowd-out effects associated with 

incentives.   

  



23 
 

Table D5: Case set 1 manufacturing industry share multiple equilibria test 

 

𝑠𝑐(𝑗),20

− 𝑠𝑐(𝑗),5 

 

𝑠𝑐(𝑗),20 − 𝑠𝑐(𝑗),−1 

 

IV Estimate  

(1) 

 1 

Equilibrium 

(2) 

2 

Equilibria 

(3) 

3 

Equilibria 

(4) 

4 

Equilibria 

(5) 

PreMDP Growth Rate -0.003255  -3.613 0.7158 0.7424 2.208 

 (0.005816)  (9.779) (65.93) (69.19) (125.1) 

MDP Shock 8.568e-05***      

 (1.784e-05)      

δ1 
 

 

 

-

41,040*** -72.48 470 

    (12,870) (18,280) (32,880) 

δ3     40,970* 522.8 

     (21,420) (36,060) 

δ4      41,000** 

      (18,340) 

Constant 0.2928  729.7 41,020*** 49.02 -505.4 

 (0.4315)  (700.8) (11,840) (17,490) (34,100) 

Thresholds       

b1    247.8 72.68 17.02 

b2     254.6 64.92 

b3      254.6 

Intercept ordering 

criterion 
N/A 

 
N/A Pass Fail Fail 

Schwarz Criterion N/A  -141.7 -172.3 -175 -177.7 

Counties 20  20 20 20 20 

R-squared   0.010 0.464 0.464 0.464 
NOTES: The table presents the results of our tests for manufacturing industry share multiple equilibria associated 

with the case set 1 MDPs. Column 1 is the IV estimation of equation (12), which tests the null of a unique 

equilibrium by testing with the coefficient on the MDP shock is minus unity. Columns 2-5 present the results of the 

one, two, three, and four equilibria specifications of equation (17) with the threshold values that maximized the 

Schwarz criterion. The intercept ordering criterion requires: 𝛿1 + 𝛿2 < 𝑏1 < 𝛿2 < 𝑏2 < 𝛿2 + 𝛿3 < 𝑏3 < 𝛿2 + 𝛿4, 

where the constant is 𝛿2 above. Standard errors are in parentheses. *** p<0.01, ** p<0.05, * p<0.1 
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Table D6: Case set 2 manufacturing industry share multiple equilibria test 

 

𝑠𝑐(𝑗),20

− 𝑠𝑐(𝑗),5 

 

𝑠𝑐(𝑗),20 − 𝑠𝑐(𝑗),−1 

 

IV Estimate  

(1) 

 1 

Equilibrium 

(2) 

2 

Equilibria 

(3) 

3 

Equilibria 

(4) 

4 

Equilibria 

(5) 

PreMDP Growth Rate  -0.002111      

 (0.008214)      

MDP Shock 8.694e-05***  -1.553 -4.2830 -5.503 -8.199 

 (1.468e-05)  (11.50) (89.78) (103.5) (129.2) 

δ1 
   

-

20,510*** 215.6 -631.7 

    (7,345) (8,566) (16,390) 

δ3     20,540** -634.5 

     (7,576) (14,520) 

δ4      20,550** 

      (7,757) 

Constant 0.1832  324.5 20,540*** 1.140 636.1 

 (0.2371)  (326.3) (6,839) (2,969) (14,190) 

Thresholds       

b1    23.34 -0.5184 -8.618 

b2     60.57 0.2002 

b3      60.57 

Intercept ordering 

criterion 
N/A  N/A Fail Fail Fail 

Schwarz Criterion N/A  -270.7 -335.2 -338.6 -342 

Counties 30  30 30 30 30 

R-squared   0.001 0.225 0.225 0.225 
NOTES: The table presents the results of our tests for manufacturing industry share multiple equilibria for case set 2 

MDPs. Column 1 is the IV estimation of equation (12), which tests the null of a unique equilibrium by testing with 

the coefficient on the MDP shock is minus unity. Columns 2-5 present the results of the one, two, three, and four 

equilibria specifications of equation (17) with the threshold values that maximized the Schwarz criterion. The 

intercept ordering criterion requires: 𝛿1 + 𝛿2 < 𝑏1 < 𝛿2 < 𝑏2 < 𝛿2 + 𝛿3 < 𝑏3 < 𝛿2 + 𝛿4, where the constant is 𝛿2 

above. Standard errors are in parentheses. *** p<0.01, ** p<0.05, * p<0.1. 
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Table D7: Case set 3 manufacturing industry share multiple equilibria test 

 

𝑠𝑐(𝑗),20

− 𝑠𝑐(𝑗),5 

 

𝑠𝑐(𝑗),20 − 𝑠𝑐(𝑗),−1 

 

IV Estimate  

(1) 

 1 

Equilibrium 

(2) 

2 

Equilibria 

(3) 

3 

Equilibria 

(4) 

4 

Equilibria 

(5) 

PreMDP Growth Rate  7.444e-04  -0.02986 0.4695 1.076 1.118 

 (0.009371)  (2.405) (20.67) (20.60) (21.05) 

MDP Shock 8.804e-05***      

 (2.746e-05)      

δ1    -2,655*** -3.838 16.42 

    (1,009) (717.2) (1,613) 

δ3     3,915*** 18.83 

     (1,263) (1,639) 

δ4      3,915*** 

      (1,265) 

Constant   41.55 2,654*** 0.8327 -18.03 

   (39.67) (941.8) (549.4) (1,547) 

Threshholds       

b1    59.52 5.329 4.033 

b2     86.36 5.307 

b3      86.36 

Intercept ordering 

criterion 
N/A 

 
N/A Pass Fail Fail 

Schwarz Criterion N/A  -1887 -2408 -2412 -2417 

Counties   250 250 250 250 

R-squared   0.000 0.028 0.044 0.044 
NOTES: The table presents the results of our tests for manufacturing industry share multiple equilibria for case set 3 

MDPs. Column 1 is the IV estimation of equation (12), which tests the null of a unique equilibrium by testing with 

the coefficient on the MDP shock is minus unity. Columns 2-5 present the results of the one, two, three, and four 

equilibria specifications of equation (17) with the threshold values that maximized the Schwarz criterion. The 

intercept ordering criterion requires: 𝛿1 + 𝛿2 < 𝑏1 < 𝛿2 < 𝑏2 < 𝛿2 + 𝛿3 < 𝑏3 < 𝛿2 + 𝛿4, where the constant is 𝛿2 

above. Standard errors are in parentheses. *** p<0.01, ** p<0.05, * p<0.1. 
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Table D8: Case set 4 manufacturing industry share multiple equilibria test 

 

𝑠𝑐(𝑗),20

− 𝑠𝑐(𝑗),5 

 

𝑠𝑐(𝑗),20 − 𝑠𝑐(𝑗),−1 

 

IV Estimate  

(1) 

 1 

Equilibrium 

(2) 

2 

Equilibria 

(3) 

3 

Equilibria 

(4) 

4 Equilibria 

(5) 

PreMDP Growth Rate   -0.002376  -0.001606 -0.002849 -0.003307 -0.003346 

 (0.009062)  (0.009231) (0.003995) (0.004011) (0.004013) 

MDP Shock -0.03428      

 (0.1258)      

δ1    -2.368*** -1.003* 0.4592 

    (0.4885) (0.6017) (0.8238) 

δ3     1.910** 1.451 

     (0.7861) (0.9758) 

δ4      1.900** 

      (0.7784) 

Constant 0.5476  0.8182** 2.538*** 1.137** -0.3042 

 (0.4252)  (0.4056) (0.4513) (0.5717) (0.7990) 

Thresholds       

b1    2.051 1.512 1.153 

b2     3.017 1.512 

b3      3.017 

Intercept ordering 

criterion 
N/A 

 
N/A Pass Fail Fail 

Schwarz Criterion N/A  -839.9 -632.2 -636.1 -641.4 

Counties 250  250 250 250 250 

R-squared   0.000 0.087 0.098 0.100 
NOTES: The table presents the results of our tests for manufacturing industry share multiple equilibria for case set 4 

MDPs. Column 1 is the IV estimation of equation (12), which tests the null of a unique equilibrium by testing with 

the coefficient on the MDP shock is minus unity. Columns 2-5 present the results of the one, two, three, and four 

equilibria specifications of equation (17) with the threshold values that maximized the Schwarz criterion. The 

intercept ordering criterion requires: 𝛿1 + 𝛿2 < 𝑏1 < 𝛿2 < 𝑏2 < 𝛿2 + 𝛿3 < 𝑏3 < 𝛿2 + 𝛿4, where the constant is 𝛿2 

above. Standard errors are in parentheses. *** p<0.01, ** p<0.05, * p<0.1. 

 

 

 


	22-21 Patrick-Partridge Draft_3-20-22_withAppendix.pdf
	Patrick-Partridge Draft_3-20-22_new
	Patrick&Partridge_Appendix




